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Magnetic resonance imaging (MRI) is a common way to diagnose related diseases. However, the magnetic resonance 

(MR) images are easily defected by motion artifacts in their acquisition process, which affects the clinicians' diagnosis. 

In order to correct the motion artifacts of MR images, we propose a convolutional neural network (CNN)-based 

method to solve the problem. Our method achieves a mean peak signal-to-noise ratio (PSNR) of (35.212±3.321) dB 

and a mean structural similarity (SSIM) of 0.974 ± 0.015 on the test set, which are better than those of the comparison 

methods.  
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Since magnetic resonance imaging (MRI) is sensitive to 

the motion, there are motion artifacts in MRI acquisition. 

As reported in Ref.[1], about 10%—42% of brain ex-

aminations bring motion artifacts, which interfere with 

the clinician's diagnosis. The reasons leading to motion 

artifacts during brain MRI acquisition can be classified 

as sudden involuntary movements caused by sneezing, 

coughing, yawning, and semi-regular movements such as 

swallowing and blinking, and conscious motion of body 

parts[2].  

Nowadays, some methods have been proposed to pre-

vent, mitigate or correct motion artifacts, one of which 

prevents motion artifacts by restricting head movement 

with cushions and head holders. Besides, fast single-shot 

pulse sequence, non-Cartesian k-space acquisition strat-

egy, measuring the head pose in a real-time manner ei-

ther in image space or k-space are used to obtain clean 

magnetic resonance (MR) images during their acquisi-

tion process[3,4]. Since the factors influencing motion 

artifacts during MRI acquisition are more complex, there 

is no simple and effective general solution for this prob-

lem. In addition, the availability of the above mentioned 

motion artifact correction methods varies among MRI 

device manufacturers, which would hinder their applica-

tion in clinical applications. 

Deep learning with convolutional neural networks has 

also been applied to correct motion artifacts. For instance, 

a recurrent neural network based method is proposed to 

reduce cardiac MRI motion artifacts and the multi-scale 

structures are used in the method to extract local and 

global features[5]. TAMADA et al[6] developed a method 

based on denoising convolutional neural network 

(DnCNN)[7] for motion artifact reduction of liver, which 

significantly reduces the magnitude of the artifacts and 

blurring induced by respiratory motion. Nevertheless, 

these non-rigid motion artifacts are different from rigid 

motion artifacts on appearance. A motion correction net-

work (MoCoNet)[8] is proposed as a specific method for 

brain motion artifacts correction. However, it only adjusts 

the number of convolutional layer in U-Net and has lim-

ited capacity in motion artifacts correction. The deep re-

sidual network with densely connected multi-resolution 

block (DRN-DCMB)[9] is another model recently pro-

posed for brain motion artifacts reduction and achieves 

higher performance compared with the comparison meth-

ods. However, DRN-DCMB is trained on the small image 

patches that are randomly selected from the full size image, 

which leads to decrease conspicuity of small anatomic 

structures of the original full image. Meanwhile, us-

ing
2
� loss function to train DRN-DCMB leads to omitting 

the underlying structure in the MR images. Therefore, in 

this paper, we propose a new network to correct motion 

artifacts, which is trained on the original full MR images 

and focuses on the whole correction. 
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Since the motion artifacts are caused unintentionally 

during  MRI acquisition, it is impossible to deliberately 

make patients cooperate to obtain MR image pairs with 

and without motion artifacts. Therefore, it is necessary to 

simulate  the motion artifacts on clean MR images. 

Note that the head motion is rigid, and can be modeled 

as a combination of translational and rotational motions 

with six degrees of freedom. By defining a voxel coor-

dinate of MR image as V=(vx, vy, vz), its coordinate after 

rigid motion can be modeled as 
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where the left matrix on the right hand side represents 

the rigid motion, which is recorded as T for convenience. 

The upper-left sub-matrix and the last column of T indi-

cate the rotation and translation along the three axes, 

respectively. 

Fourier theorem indicates that translation in the spatial 

domain results in phase errors in the k-space domain 

along the phase-encoding direction, while rotation in 

spatial domain results in identical rotation of the k-space 

data with the rotation axis through the origin. Given a 

clean MR image X, its corresponding MR imageY with 

motion artifacts can be calculated as 

 [ ( ) ],f f � �
 �
�� Y T X , (2) 

where f and f ′ indicate the Fourier transform and inverse 

Fourier transform, respectively. α and β are the parame-

ters of motion artifacts simulation. The center α% of the 

k-space lines of X are kept intact to reserve the low fre-

quency data that determined image contrast. β% of the 

remaining peripheral k-space lines are randomly selected 

for rigid motion transformation. 

The architecture of our proposed network is illustrated 

in Fig.1. The network consists of four feature extraction 

modules (FEMs), which are used for feature extraction of 

the input MR images with motion artifacts and connected 

through the attention dense connection to reuse the for-

mer features. The feature-extraction module is proposed 

based on the U-Net[10], while convolutional block and 

copy connection are replaced with attention paralleling 

block (APB) and attention residual block (ARB), respec-

tively. The architectures of APB and ARB are shown in 

Fig.1(c) and Fig.1(d). The APB and the ARB can help 

our network to extract more features and further improve 

the correction results. This attention mechanism uses 

channel and spatial attention synergies[11], firstly, input 

features are passed through the channel attention module 

in order to give more weight to the features that contrib-

ute to the task, and then the channel-weighted features 

are fed into the spatial attention module to obtain 

weighted features in the spatial dimension. Residual 

connectivity[12] has two roles in the network proposed in 

this paper, in addition to facilitating gradient propagation 

and preventing gradient disappearance and gradient ex-

plosion during training, it also allows reusing the previ-

ous features to facilitate the extraction of richer semantic 

information in the later layers. The activation function 

used in this paper is rectified linear unit (ReLU). 

For each FEM, the parameters of each convolutional 

layer remain the same except for the input channel pa-

rameters. The numbers of input and output channels are 

labeled next to each module in Fig.1(b), where the num-

ber of input channels in the first module is replaced by x. 

According to the input and output channel parameters of 

FEM, the parameter settings of the entire network can be 

inferred. 

In order to evaluate the correction results of motion 

artifacts,  the peak signal-to-noise ratio (PSNR) and 

structural similarity (SSIM) are used as evaluation metrics 

in this paper. PSNR is an objective standard for evaluating 

images. It is often used as a measurement method of 

signal reconstruction quality. It is used to measure the 

ratio of average energy between peak signal and back-

ground noise. Its unit is dB. The larger the value, the 

smaller the distortion. Given a set of images I and images 

O, PSNR can be defined as  
2

10
10 log ( )

MAXPSNR
MSE

� � I ,                   (3) 

where MSE is the mean square error of the two images, 

and MAXI is the maximum pixel value of I. 

Since PSNR evaluates the image quality based on the 

error between the corresponding pixels, it does not take 

into account the visual characteristics of human eye, that 

is, the human eye is more sensitive to contrast differences 

with lower spatial frequencies and more sensitive to dif-

ferences in brightness contrast, which often results in 

inconsistencies between the evaluation results and peo-

ple’s subjective feelings. As a full-reference image quality 

evaluation metric, SSIM measures the similarity of images 

from the three aspects of luminance, contrast and structure, 

and can be consistent with human visual perception on the 

whole. The definition of SSIM is 
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 where μI 
and σI

2 are the mean and variance of I, respec-

tively, μO and σO
2 are the mean and variance of O respec-

tively, σIO 
is the covariance of I and O, c1=(k1L)2, 

c2=(k2L)2, k1 
and k2 are fixed values with 0.01 and 0.03, 

respectively, and L denotes the range of pixel values. 

The experimental data includes 45 brain T1-weighted 

(T1W) MRI scans with matrix sizes of 336×448×56, 

which were collected from a retrospective database of 

Tianjin Huanhu Hospital and anonymized prior to the use 

of researchers. The research has been approved by the 

institutional ethic committee. The experienced clinicians 

from Tianjin Huanhu Hospital confirmed that these T1W 

images have no motion artifacts. The images are randomly 

divided into training set, validation set and test set, 

with27, 9 and 9 subjects, respectively. 
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Fig.1 Attention residual dense network and module illustration 
 

Each MR image is resampled to 192×192×56 using 

linear interpolation before simulating motion artifacts. 

The intensities of the clean and corrupted images are 

normalized to a range of [0,1] before entering the net-

works. Data augmentation techniques are adopted in this 

research. In particular, each input image is randomly 

rotated by a degree ranging from 1° to 360°, flipped ver-

tically and horizontally on the fly, so as to augment the 

dataset and reduce memory footprint. Every augmenta-

tion method has a random number with 0—1 uniform 

distribution. If the random number exceeds 0.5, the cor-

responding augmentation method is performed. 

The parameters used in simulating motion artifacts are 

randomly generated with maximum translation of voxel 

along the x-axis, y-axis and z-axis are 8 mm, 8 mm and 

4 mm, respectively, the maximum rotation angle is 9°, 

and α is set to 10. β is drawn from a uniform distribution 

within [20, 60]. 

The networks are initialized using Kaiming's method[13] 

and the optimizer is the Adam method[14]. The initial 

learning rate is 10-3. During training, the learning rate is 

scaled down by a factor of 0.1 if no progress is made for 

15 epochs on validation loss, and the training stops after 

30 epochs with no progress on the validation loss. 

 

The experiments are performed on a computer with an 

Intel Core i7-6800K CPU, 64 GB RAM and Nvidia Ge-

force 1080Ti GPU with 11 GB memory. All networks are 

implemented in PyTorch. 

Since the T1W image reflects the anatomical structure, 

motion artifact correction should focus on the luminance, 

contrast, and texture. Inspired by the work in image res-

toration[15], we propose to use the sum of multi-scale 

structural similarity (MS-SSIM) loss and
1
� loss to correct 

motion artifacts, where MS-SSIM loss preserves the tex-

ture and contrast in high-frequency regions, and 
1
�  loss 

preserves the luminance. The loss used in the proposed 

method is defined as 

 ˆ ˆ( , ) [1 ( , )] (1 ) M
G

MS G
�

� �� � � � � � �X X X XL   

1
ˆ|| ||�X X ,                      (5) 

where X and X̂ are the clean MR image and the recon-

structed MR images, respectively. MS denotes MS-SSIM 

loss. M
G

G
� is the Gaussian coefficient. λ is a tradeoff coef-

ficient between the MS-SSIM and the
1
� loss. In our ex-

periment, λ is set to be 0.84. 

After the motion artifact simulation, the motion arti-

facts generated on the clean T1W images are shown in 
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Fig.2(b). These motion artifacts, which appear as blurs or 

ghosts, severely degrade the image quality and may in-

terfere with the clinician's diagnosis. Tab.1 summarizes 

the quantified results between the images with the motion 

artifacts and the original clean images on the test set, 

which is denoted as MA. The SSIM is 0.635±0.070, 

which indicates that the motion artifacts bring obvious 

effects to the original image in terms of luminance, con-

trast and structure. Especially for image slices with com-

plex structure, the influence of motion artifacts is more 

obvious. For instance, The PSNR and SSIM of the image 

slice in the first row of Fig.2(b) are 25.288 dB and 0.503, 

respectively, which are both lower than their average 

values of 27.507 dB and 0.635 on the test set. 

PSNR:32.071 dB SSIM:0.753 PSNR:36.963 dB SSIM:0.975

PSNR:28.886 dB SSIM:0.596 PSNR:34.639 dB SSIM:0.953

PSNR:30.829 dB SSIM:0.676 PSNR:36.100 dB SSIM:0.975

PSNR:25.288 dB SSIM:0.503 PSNR:29.587 dB SSIM:0.929PSNR:28.462 dB SSIM:0.909

PSNR:35.019 dB SSIM:0.963

PSNR:33.760 dB SSIM:0.940

PSNR:35.011 dB SSIM:0.964

 

(a)           (b)            (c)           (d) 
PSNR:30.326 dB SSIM:0.929 PSNR:28.626 dB SSIM:0.923 PSNR:30.971 dB SSIM:0.945PSNR:29.715 dB SSIM:0.932

 

PSNR:37.122 dB SSIM:0.972 PSNR:34.886 dB SSIM:0.975 PSNR:39.950 dB SSIM:0.988

PSNR:34.847 dB SSIM:0.945 PSNR:31.065 dB SSIM:0.951 PSNR:38.040 dB SSIM:0.976

PSNR:37.366 dB SSIM:0.973 PSNR:33.448 dB SSIM:0.975 PSNR:40.223 dB SSIM:0.987PSNR:36.676 dB SSIM:0.977

PSNR:34.941 dB SSIM:0.955

PSNR:37.781 dB SSIM:0.979

 
(e)            (f)            (g)           (h) 

Fig.2 Visualized examples of the reconstruction per-
formance: (a-b) Clean MR image and the correspond-
ing MR images with motion artifacts, respectively; (c-h) 
Correction results of FCN-8s[16], U-Net[10], DnCNN[7], 
DRN-DCMB[9], MoCoNet[8] and Ours, respectively 

Tab.1 Quantitative evaluation results on the test set 
(The best results have been highlighted in bold.) 

Method PSNR (dB) SSIM 
MA 27.507±2.347 0.635±0.070 

FCN-8s
[16]

 31.526±2.607 0.942±0.023 

U-Net
[10]

 33.391±2.817 0.961±0.019 

DnCNN
[7]

 33.580±3.032 0.954±0.022 

DRN-DCMB
[9]

 29.852±2.912 0.955±0.022 

MoCoNet
[8]

 33.627±2.905 0.964±0.018 

Ours 35.212±3.321 0.974±0.015 
 

For the sake of comparison, we also train and evaluate 

fully convolutional network (FCN)-8s[16], U-Net[10], 

DnCNN[7], MoCoNet[8] and DRN-DCMB[9] using the 

same settings and loss function on our dataset. Fig.2 visu-

alizes some slices of motion artifacts and their correction 

results. As Fig.2 shows, the input MR images contain se-

vere motion artifacts after the rigid motion transformation. 

Although FCN-8s and U-Net are generally used for seg-

mentation task, they present high performance on motion 

artifacts correction and obtain clean MR images. As a 

specified denoising network, DnCNN has achieved com-

petitive results on the PSNR, which highlights its denois-

ing ability, but it ignores some image information such as 

structure and obtain a lower SSIM. However, as a specified 

model for correcting motion artifacts, DRN-DCMB ig-

nores some structure contrast. By replacing the two-layer 

convolution of U-Net with three-layer convolution, Mo-

CoNet achieves close correction results to U-Net. In com-

parison, the proposed method substantially corrects the 

motion artifacts and produces cleaner MR images, and 

meanwhile the image contrast is maintained and subtle 

image details are preserved. 

The quantitative evaluation results are summarized in 

Tab.1. As Tab.1 shows, benefit from multi-scale feature 

fusion, U-Net and MoCoNet achieve competitive correc-

tion results, which exceeds the comparison methods ex-

cept our proposed method. Our proposed method, how-

ever, achieves the best correction results with a mean 

PSNR of (35.212±3.321) dB and a mean SSIM of 

0.974±0.015 thanks to the utilization of the attention 

dense connection to reuse the former features and four 

feature extraction modules to extract more features. 

Furthermore, we evaluate our proposed method on the 

MR images with real motion artifacts. Visualized exam-

ples of the MR image with real motion artifacts and the 

corresponding motion-corrected images are shown in 

Fig.3. Our proposed method substantially reduces the mo-

tion artifacts while maintaining the image contrast and 

details. 

In this paper, we propose a CNN-based method to 

correct motion artifacts of MR images. The fea-

ture-extraction modules extract rich semantic informa-

tion and the dense connection reuse more features. The 

experiments of motion artifacts simulation demonstrate 
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(a)            (b)            (c)           (d) 

 
(e)           (f)            (g)  

Fig.3 Visualized examples of the MR image with real 
motion artifacts and the corresponding mo-
tion-corrected images: (a) MR image with real motion 
artifacts; (b-g) Correction results of FCN-8s[16], 
U-Net[10], DnCNN[7], DRN-DCMB[9], MoCoNet[8] and 
Ours, respectively 
 

that our proposed method outperforms the comparison 

methods. 
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