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Blind restoration of turbulence degraded images based 
on two-channel alternating minimization algorithm* 
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Due to the atmospheric turbulence and the system noise, images are blurred in the astronomical or space object detec-

tion. Wavefront aberrations and system noise make the capability of detecting objects decrease greatly. A two-channel 

image restoration method based on alternating minimization is proposed to restore the turbulence degraded images. 

The images at different times are regarded as separate channels, then the object and the point spread function (PSF) are 

reconstructed in an alternative way. There are two optimization parameters in the algorithm: the object and the PSF. 

Each optimization step is transformed into a constraint problem by variable splitting and processed by the augmented 

Lagrangian method. The results of simulation and actual experiment verify that the two-channel image restoration 

method can always converge rapidly within five iterations, and values of normalized root mean square error (NRMSE) 

remain below 3% after five iterations. Standard deviation data show that optimized alternating minimization (OAM) 

has strong stability and adaptability to different turbulent levels and noise levels. Restored images are approximate to 

the ideal imaging by visual assessment, even though atmospheric turbulence and systemnoise have a strong impact on 

imaging. Additionally, the method can remove noise effectively during the process of image restoration. 
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The imaging of astronomical or space objects is always 

interfered by atmospheric turbulence and system noise, 

so the images of them are blurred[1]. Wavefront aberra-

tions and detector noise make image quality decrease 

considerably. To meet the requirements for precise spa-

tial positioning and object recognition, it is necessary to 

restore the images utilizing different image processing 

methods. 

The imaging process can be regarded as a convolution 

operation between the point spread function (PSF) and 

the object. At the same time, the imaging process also 

introduces noise due to the limitation of detector per-

formance. Then the image restoration is the process of 

deconvolution and denoising. Speckle imaging[2], lucky 

imaging[3], and phase diversity (PD)[4] have been suc-

cessfully applied to restore astronomical or space objects. 

Speckle imaging needs a reference object and thousands 

of short-exposure images. The restoration accuracy of 

the lucky imaging depends on the probability of obtain-

ing a "lucky image" and is only suitable for the situation 

that turbulence has a slight effect on the imaging[5]. Al- 

though the PD method can be used for the point sources 

and extended objects, it needs extremely complex calcu-

lation, and its convergence speed is very slow[6]. 

The blind deconvolution algorithm is widely used be-

cause of low system cost and no requirement of prior 

knowledge[7]. This kind of algorithm is often not stable 

enough and very sensitive to noise in the case of low 

photon levels. AYERS et al[8] used the non-negativity of 

the image as a prerequisite and proposed a sin-

gle-channel iterative blind deconvolution method. Sin-

gle-channel blind deconvolution presents long calcula-

tion time, inconsistent results, and non-convergence. 

Multi-frame blind deconvolution was submitted when 

multiple images of the same scene can be obtained[9,10]. 

SCHULZ first applied the method to process Hubble 

space telescope images. HIRSCH et al[11] presented a 

technique for multi-frame deconvolution called online 

blind deconvolution (OBD). KANAEV et al[12] have 

done a lot of research on eliminating noise in 

multi-frame blind deconvolution.
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Most multi-frame blind deconvolution methods use 

multiple images to estimate the PSF, and then restore the 

object by deconvolution. The disadvantage is that it 

cannot remove the noise effectively, which can easily 

lead to the ringing effect of the restoration result. Addi-

tionally, most of the restoration methods mentioned as-

sume that the turbulence is frozen and use this as a pre-

requisite, whereas, the turbulence changes dynamically 

indeed. Based on the alternating minimization algo-

rithm[13], a two-channel image restoration algorithm is 

proposed in this paper. In this method, two images at 

different times are regarded as two channels, and then 

the object and its PSF are estimated alternately.  

Assuming that there are P images (P>1) corresponding 

to the unknown object u, the mathematical optical ima- 

ging model can be written as  
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where gk is the image, hk denotes PSF, and nk is noise in 

the kth observation. The operator * stands for convolu-

tion. Estimating an unknown object u from gk is ill-posed. 

This problem can only be solved by regularization, and 

its solution can be described as  
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where F is the data fidelity term, Q is the regularizer of 

the object, and R is the regularizer of PSFs. The function 

F is defined as  
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where γ is the weight of the fidelity term, and i  is the 

L2 norm. Alternating minimization is used to solve 

Eq.(2). This problem is split into two sub-problems:  
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Convergence to the global minimum is not guaranteed 

theoretically since the unknown variables are coupled in 

F. However, each sub-problem converges to its global 

minimum separately, and it can be solved by the aug-

mented Lagrangian method efficiently. In general, the 

global minimum of Eq.(2) is attainable after a few alter-

nations between the sub-problems. This method achieves 

image restoration by optimizing the u-step and h-step 

alternately. Augmented Lagrangian and total variation 

methods are used to promote the convergence of the so-

lution for the object, and the Laplacian operator is used 

to enhance the robustness against noise for PSF.  

Based on above-mentioned alternate minimization al-

gorithm, a two-channel image restoration method is pre-

sented in this paper, which regards different images at 

different times as multiple channels and then estimates 

the object and PSF alternately. The initial alternating 

minimization in Ref.[13] is suitable for motion blur. 

Compared with motion blur, the aberration caused by 

dynamic atmospheric turbulence is more diffuse and 

complicated. The initial alternating minimization is ap-

plied to restore the turbulence degraded images, which 

needs to optimize the object and PSF continuously, and 

we call it optimized alternating minimization (OAM). 

The multi-scale approach can describe the features of 

PSF from different scales. A big-scale can improve the 

accuracy of estimated PSFs, but it results in a long com-

putational time. On the other hand, the too small scale 

cannot meet the performance requirements of restoration. 

For motion blur, it is reasonable to ensure the accuracy 

that the scale is set at 2. To compromise the accuracy and 

computational time, the scale should be selected at a 

relatively high value in image restoration. The weight of 

the fidelity term γ guarantees the solution to be consistent 

with the degradation process. PSF will become blurred 

and is prone to noise for a large γ. Estimated PSFs will 

focus only on small areas with a low γ. To obtain accu-

rate PSF, γ should be adjusted as an appropriate value 

between 10-3 and 10-5 in image restoration. Due to the 

complexity of atmospheric turbulence, the number of 

iterations is more than that of motion blur theoretically. 

Each iteration includes an h-step and a u-step. In our 

experiment, the scale is set to 3, γ is adjusted as 10-4, and 

the iteration is 15. 

In astronomical or space object detection, the object is 

blurred by atmospheric turbulence and detector noise. 

The main noise contribution comes from photon noise, 

background noise, readout noise of the imaging sensor 

and dark current noise. In general, background noise 

follows a Poisson distribution with the mean and vari-

ance both as Nb. Readout noise follows a Gaussian dis-

tribution with zero mean and variance
2

r� . Dark current 

noise can be regarded as a constant Nd. When the number 

of background noise photons is greater than 10, the sys-

tem noise can be approximated as a Gaussian random 

distribution with mean NB=Nd+Nb and vari-

ance 2 2

B r bN� �� � [14]. In the subsequent experiment, we 

use the above mathematical model to simulate noise. 

Then images with different degrees of noise can be ob-

tained by adjusting the value of Nd, Nb and
2

r� . To quan-

tify the amount of image noise, we define the following 

signal-to-noise ratio (SNR) 
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where Var(u) denotes the variance of the pixel values of 

u. 

Root mean square error (RMSE) is used to evaluate the 

restoration performance[15]. Supposing two m×n mono-

chrome images I and K, RMSE is defined as 
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where I is an ideal image and K is the reconstructed im-

age. The smaller the RMSE value, the better the restora-

tion performance. Experiments results are presented in 

normalized root mean square error (NRMSE) finally. 

In subsequent experiments, the method proposed by 

RODDIER[16] is used to simulate atmospherically 
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distorted wavefronts. Phase screens are generated at dif-

ferent atmospheric turbulence levels. In theory, the 

smaller the atmospheric coherent length r0, the stronger 

the turbulence, and the greater the influence on the ima- 

ging of astronomical or space objects. In practice, D/r0 is 

usually used to describe the effect of atmospheric turbu-

lence on imaging, where D is the aperture of the tele-

scope. When D is determined, the smaller the value of 

the atmospheric coherence length r0 is, the greater the 

influence degree is. It is generally considered in related 

research areas that D/r0=20 represents relatively strong 

atmospheric turbulence, and D/r0=5 stands for weak at-

mospheric turbulence. Distorted wavefronts are selected 

randomly as the blur kernels. The experiment is per-

formed on a PC with a 3.30GHz Intel(R) 

Core(TM)i5-4590 CPU in the Matlab program environ-

ment.  

The original object, called satellite, is given in Fig.1(a). 

The grayscale of the images is from 0 to 255, and the 

image size is 512×512 pixels. The diffraction limit angle 

(λ/D) is supposed to be 5 pixels. Then the entire field of 

view is about 102 times of the size of diffraction-limited 

angle. Fig.1(b) shows the perfect imaging. It is noted that 

the ideal imaging and original PSFs are unknown in 

practical applications.  

 

  
              (a)                         (b) 

Fig.1 (a) Original object-satellite image and (b) its 
corresponding perfect imaging effect 

 

To investigate the convergence and robustness of 

OAM, corresponding PSFs of 200 different phase 

screens under one turbulent level are used as the blur 

kernels to obtain 200 different blurred images. All of 

these blurred images are divided into 100 groups ran-

domly. The object image can be restored through one 

group (two blurred images) by OAM, and the average of 

100 groups is considered as the ultimate experimental 

result. Image restoration results and convergence and 

stability of OAM are examined under different noise 

levels when D/r0 are 5, 10, 15, 20 and 25, respectively. 

For comparison, the OBD proposed by HIRSCH[11] is 

also investigated.  

The average convergence of NRMSE for different 

noise levels and different turbulent strengths are shown 

in Fig.2. From Fig.2, one can see that OAM can con-

verge rapidly under different turbulent strength and dif-

ferent noise levels. The iteration needed for convergence 

is about five times under different conditions. Values of 

NRMSE remain below 3% after five iterations, and it 

does not increase with the growth of turbulence strength 

and noise level, which indicates that OAM has good ro-

bustness and adaptability to different turbulent strengths 

and different noise levels. 
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Fig.2 NRMSE curves under different turbulent 
strength and noise levels, where (a)—(e) are for 
D/r0=5, 10, 15, 20 and 25, respectively 

 

To further examine the stability and the adaptability of 

OAM, we use the standard deviation of NRMSE of 100 

groups to analyze the dispersion degree from the average. 

Curves of the standard deviation under different turbu-

lence levels and SNR are presented in Fig.3. Fig.3 shows 

that the standard deviation curves for D/r0=5, 10, 15, 20 

and 25 converge at 2‰ after about five iterations under 

three noise levels. Although the turbulence has a strong 

impact on imaging, when D/r0 is set at 20 or 25, the va- 

lues of standard deviation are slightly higher than that of 

D/r0=10, and the values remain below 5‰. Additionally, 

all curves are close to zero after 10 iterations. The above 

data and tendency show that the proposed OAM has 

strong stability and adaptability.  

 

 
 

 

 
 

 
 

 

Fig.3 Standard deviation curves under different tur-
bulent strength and noise levels, where (a)—(e) are 
for D/r0=5, 10, 15, 20 and 25, respectively 

 

To inspect the restoration effects, the corresponding 

images are shown in Fig.4 under the condition of 

D/r0=20 with different noise levels. Two different PSFs, 

whose sizes are 64 64 pixels, are shown in Fig.4(a) and 

(c). Corresponding blurry images of satellite are illus-

trated in Fig.4(b) and (d), where the noise level SNR is 

30 dB. Compared with the imaging in Fig.1(b), the 

blurry images in Fig.4(b) and (d) deteriorate severely, 

and it's almost impossible to distinguish the object. 

Estimated PSFs from blurry images of satellite by 

OAM are presented in Fig.5(a) and (b). Fig.5(c) shows 

the recovery image. Compared with the imaging in 

Fig.1(b), Fig.5(c) is only slightly blurred in visual ob-

servation. In other words, Fig.5(c) is very close to the 
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ideal imaging. 

 

  
              (a)                        (b) 

  
              (c)                        (d) 

Fig.4 Original PSFs and blurry images at D/r0=20 and 
SNR=30 dB: (a) PSF1; (b) Imaging A1 of satellite by 
PSF1; (c) PSF2; (d) Imaging A2 of satellite by PSF2 
 

  
               (a)                        (b) 

 
(c) 

Fig.5 Recovery results at D/r0=20 and SNR=30 dB: (a) 
Estimated PSF1 from A1; (b) Estimated PSF2 from A2; 
(c) Estimated image of satellite 

 

Similarly, experiments are implemented at D/r0=20 

under high noise level, and results are given in Fig.6 and 

Fig.7, where the SNR is set at 20 dB and 10 dB, respec-

tively. Fig.6(a) and (b) are two blurry images selected 

randomly, and Fig.6(c) and (d) are the restored images 

by OAM and OBD, respectively. For OBD, we simulate 

30 frames of blurry images to obtain the results. Com-

pared with restored images in Fig.6(c) by OBD, images 

in Fig.6(b) are sharper, and the quality is comparable to 

the ideal imaging by visual assessment. And Fig.7 can 

get the same comparison result. Additionally, OAM al-

gorithm can remove noise effectively during the process 

of image restoration and preserve more image details. 

 

  
              (a)                         (b) 

  
              (c)                        (d) 

Fig.6 Blurry and reconstructed images of satellite at 
D/r0=20 and SNR=20 dB: (a), (b) Two blurry images 
selected randomly; (c) Image reconstructed by OAM; 
(d) Image reconstructed by OBD 
 

  
               (a)                        (b) 

  
    (c)                        (d) 

Fig.7 Blurry and reconstructed images of satellite at 
D/r0=20 and SNR=10 dB: (a), (b) Two blurry images 
selected randomly; (c) Image reconstructed by OAM; 
(d) Image reconstructed by OBD 
 

As seen from the above discussion, OAM can effi-

ciently restore the images suffered from atmospheric 
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turbulence and system noise by simulation. To test and 

verify the algorithm performance well, an actual experi-

ment is executed. In this experiment, a piece of stripe 

board is set as a space object and placed 2.4 km away 

from the observation telescope with an aperture of 1.3 m. 

Fig.8(a) is the original object of the stripe board with 

basic structural features. Fig.8(b) and (c) are two blurred 

pictures selected randomly from two hundred photos 

captured by charge coupled device (CCD), which are 

affected by turbulence and noise unknown. Fig.8(d) is 

the final reconstructed image by OAM. By visual obser-

vation, one can see that the definition of Fig.8(d) is far 

better than that of Fig.8(b) or (c). Meanwhile, quantita-

tive assessment of image quality can be realized by mean 

opinion scores (MOS)[17], which is a method based on the 

fact that a high-contrast image is often more similar to its 

contrast enhanced image. The higher the MOS, the better 

the image quality. By calculation, the MOS of Fig.8(d) is 

2.222 2 larger than those of Fig.8(b) and (c), which are 

2.048 0 and 2.099 3, respectively. Thus, it can be seen 

that the actual experiment also fully validates the OAM 

has strong stability and adaptability. 

 

  
(a)                         (b) 

  
                (c)                       (d) 

Fig.8 Experiments of stripe board: (a) Original object; 
(b), (c) Two blurred pictures selected randomly; (d) 
Image reconstructed by OAM 

 

Due to the atmospheric turbulence and the system 

noise, the images are blurred in the astronomical or space 

object detection. It is necessary to restore the images by 

using different image processing methods. Based on the 

alternating minimization, we propose an imaging resto-

ration method OAM, which is applicable for turbulence 

degraded images.  

Collectively, simulation and actual experiment results 

verify that the proposed two-channel blind deconvolution 

based on alternating minimization can restore image well 

under different turbulence and noise levels. By statistical 

assessment, regardless of the turbulence strength and 

noise level, OAM can always converge rapidly within 

five iterations, and values of NRMSE remain below 3% 

after five iterations. Standard deviation data show that 

OAM has strong stability and adaptability to different 

turbulent levels and noise levels. Additionally, we com-

pare the restoration results of the OAM with the 

well-known OBD method. OAM shows much better im-

age quality and denoising capability than OBD. Addi-

tionally, the method we proposed can remove noise ef-

fectively during image restoration and preserve more 

image details. The above results can provide a promising 

approach for image restoration under strong turbulence 

and high noise levels in real applications. 
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