
OPTOELECTRONICS LETTERS                                                        Vol.18 No.3, 15 March 2022 

Optoelectronic devices informatics: optimizing DSSC 
performance using random-forest machine learning al-
gorithm  

 
Omar Al-Sabana and Sameh O. Abdellatif* 

Electrical Engineering Department, Faculty of Engineering and FabLab in the Centre for Emerging Learning Tech-
nology (CELT), The British University in Egypt, Cairo 11387, Egypt1 
 

(Received 12 July 2021; Revised 5 September 2021) 

©Tianjin University of Technology 2022 

 

This paper provides an attempt to utilize machine learning algorithm, explicitly random-forest algorithm, to optimize 

the performance of dye sensitized solar cells (DSSCs) in terms of conversion efficiency. The optimization is imple-

mented with respect to both the mesoporous TiO2 active layer thickness and porosity. Herein, the porosity impact is 

reflected to the model as a variation in the effective refractive index and dye absorption. Database set has been estab-

lished using our data in the literature as well as numerical data extracted from our numerical model. The random-forest 

model is used for model regression, prediction, and optimization, reaching 99.87% accuracy. Perfect agreement with 

experimental data was observed, with 4.17% conversion efficiency.   
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Silicon-based solar cells are the most well spread com-
mercial light harvesters worldwide, especially in 
large-scale applications[1]. However, silicon-based cells 
showed limitations including but not limited to, fairy high 
manufacturing cost, non-transparency, large area occupa-
tion, and low performance under diffused light. Accord-
ingly, new generations of solar cells started to glow up[2]. 
Among various new structures and materials, dye sensi-
tized solar cells (DSSCs) have been introduced in the li- 
terature as a low cost, simply fabricated and efficiently 
operated under low-light intensity solar cells[3,4]. In DSSCs, 
the active thin film layer is fabricated using mesoporous 
materials that include empty gaps, where the dye can 
penetrate[5-7]. 

Previous investigations in the literature have been re-
ported toward the optimization of these DSSCs, seeking 
for the maximum conversion efficiency[8,9]. Such optimi-
zation processes were mostly based on experimental in-
vestigations, where very few theoretical attempts were 
demonstrated[4]. In both cases, experimental or numerical 
optimizations, the efficiency maximization process was 
limited to a set of restricted boundaries without any pre-
diction capabilities.   

Recently, the term material informatics has shined in 
the literature as a booming optimization technique based 
on machine learning algorithms[10]. Materials informatics 
is a study field that focuses on investigating and applying 
the techniques of informatics to materials science and en-
gineering[10]. Previous studies dealing with integrating 
machine learning model in optimizing solar cell perfor- 

mance were presented in Refs.[11] and [12]. Specifically, 
the works in Refs.[13—16] were introduced for machine 
learning algorithms related to DSSC optimization. In 
Ref.[14], a valuable attempt was demonstrated to optimize 
the sensitizers used in DSSC fabrication. Alternatively, 
Ref.[15] illustrated an artificial integument model for ex-
ploring various organic dyes capable of being integrated in 
organic DSSCs. However, by screening the literature, no 
previous investigation on the optimization of the active 
mesoporous layer for maximizing DSSC efficiency was 
addressed. We believe that the mesoporous TiO2 layer is 
the main critical layer in DSSC design[5,6]. TiO2, in its po-
rous structure, is not only functionalized as the electron 
transport medium in DSSCs, but also it is considered as 
the hosting medium to the dye, through its pours. Addi-
tionally, the scattering mechanisms in the porous structure 
can attribute to the optical path length in the active layer, 
which reflects in the absorption enhancement.    

Consequently, this study presents an optimization pro- 
cess for the cell conversion efficiency through utilizing 
machine learning algorithm. Random-forest algorithms is 
used through python scripting code[17]. As inputs, the 
mesoporous TiO2 thickness and porosity are considered, 
while the conversion efficiency is promoted as the main 
targeted output. The porosity variation is studied as varia-
tion in the effective thickness and the effective permitti- 
vity of the TiO2-dye effective medium (Fig.1). The ma-
chine learning model is seeded with a dataset extracted 
from our previous experimental work in Refs.[3—6], along 
with numerical simulation results conducted using scanner 
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application software (SCAPS) numerical tool[18].   
As an essential step in a machine learning model, a 

dataset of inputs/output matrix is implemented. To en-
sure the reliability of the constructed model, the core 
dataset is imported from a real experimental data for 
segmented and complete DSSCs[3-6]. However, the limi-
tation in the number of fabricated samples associated 
with any experiential process leads to the integration of 
numerical data to provide the acceptable dataset range 
for the machine learning model.  

Herein, we utilize SCAPS model, which is already 
verified with respect to experiential data in our work in 
Ref.[4]. SCAPS allows us to examine the variation in the 
overall efficiency against each design parameter. In our 
model the mesoporous layer and the dye are combined in 
an effective medium layer (layer1). The optical effective 
permittivity of such medium can be addressed through 
the effective medium theory, given by 
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where εm is the medium permittivity (bulk TiO2), εi is 
the inclusion permittivity (dye), and δi is the fraction 
volume of inclusion (porosity).  
 

 

Fig.1 Demonstrative schematic for DSSC with the 
effective mesoporous (mpp) TiO2/dye layer (The figure 
also shows the machine learning model with its input 
and output) 

 
On the other hand, the variation in the effective layer 

thickness can be attributed to either variation in the 
mesoporous TiO2 layer thickness or in the porosity. In 
other words, fluctuation in porosity is contributed to the 
model as a variation in the effective permittivity (in terms 
of δi) as well as change in the overall effective thickness of 
the TiO2/dye layer. The idea beside that is very simple, as 
the porosity increase, the capability of absorbing dye in 
TiO2 voids increases, proportionally. Accordingly, the 
overall absorption increases. This increase in the absorp-
tion is modeled as an increase in the effective layer, while 
keeping the absorption coefficient of the dye (the imagi-
nary part of the permittivity ε) fixed. In the current study, 
we consider the extinction behavior of the effective 
TiO2/dye layer as a combination of the volume scattering 
due to the mesoporous structure, and the absorption spec-
trum of the dye[4]. The volume scattering in the TiO2 is 
modelled using Mie scattering model[5]. 

Experimentally, TiO2 nanoparticles were prepared us-
ing the sol-gel method described in Ref.[7]. Conse-

quently, deposition process took place using screen 
printing method. Commonly used N719 dye was utilized 
as a visible dye, while iodine-based electrolyte was in-
serted[4]. DSSCs were sealed using a hot press at a tem-
perature of 120 °C. For the sake of characterization, in-
door C-band light emitting diode (LED)-based solar 
simulator was used, with Keithley 2401 current-voltage 
source meter[19]. The overall cell efficiency is calculated 
as 
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where VOC stands for the open-circuit voltage, JSC repre-
sents the short-circuit current, FF labels the fill factor, I1S 
is equal to 1 kW/m² which is approximately the AM1.5 
Sun intensity[20], and A is the cell area. Herein, we intro-
duce the term λ1S as the spectral mismatching correction 
factor. To investigate such a mismatching coefficient, a 
V-770 ultraviolet-visible/near infrared (UV-Vis/NIR) 
spectrophotometer was used, where the wavelength from 
190 nm to 2 700 nm can be investigated. The process 
was carried out by simply placing the optical LED array 
source in aliment with the optical fiber detector then the 
spectrometer sweeps the sample and displays the result 
on its compatible software. Logically, mismatching is 
considered with respect to the AM1.5G, where 9% de-
viation was observed.   

For the sake of optimization, the dataset implemented 
is seeded in a random-forest machine learning algo-
rithm[17]. Random-forest has gained high popularity due 
to its simplicity to use, flexibility, and ability to handle 
both regression, and classification problems[17]. The input 
data is divided into two sets, the training set, and the 
validation set. The training data set is the core of the 
machine learning process, where the algorithms analyses 
and learns on. Alternatively, the validation data set is 
created to ensure that no overfitting or biasing in the 
machine learning process occurs. Validation data is 
mostly a part of the main dataset, which is kept from the 
algorithm until it finishes training, then it is applied on 
the trained module to analyses its performance on such 
new data from the machine learning model prospective. 
In this investigation, random-forest is chosen as an accu-
rate classification algorithm that uses decision trees for 
learning method[17]. In random-forest, as the algorithm 
trains the data, a number of decision trees are constructed, 
resulting in a modal made by the prediction of each of 
the individual trees[17]. The flow of the algorithm can be 
demonstrated in the flow chart shown in Fig.2[16].   

Following the procedure described above, the ran-
dom-forest algorithm is applied on the generated dataset. 
It is observed in Fig.3 that the prediction performance of 
the module applied on the dataset is perfectly matches 
the actual inputted efficiencies, where the model esti-
mated accuracy is found to be 99.87%. By tracing the 
model, both the thickness and porosity of the TiO2/dye 
effective layer have a great effect on the efficiency of the 
solar cell. Nearly 49.53% of the total increase in the cell 
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efficiency being due to the thickness and about 50.47% 
is due to the porosity. This means that the influence of 
the porosity is a bit greater than that of the thickness. The 
prediction of the efficiency variation against the 
TiO2/dye effective thickness and porosity reached its 
optimum value of 4.17% at effective thickness of 7 μm 
and porosity of 63%.    

Finally, the optimized J-V curve for the simulated 
DDSC is plotted against experimental data captured from 
our recipe in Ref.[4] (Fig.4). A perfect matching is de-
tected between both curves with an overall conversion 
efficiency of 4.17%. It is worth to highlight that the effi-
ciency observed in this work is not considered as the 
highest efficiency reported for DSSC in general. This 
limitation is a part of the constrains associated to the re- 
cipe and material used. The reason of selecting such rela-
tively low efficiency solar cell is attributed to the existence 
of a fabricated set of samples[3-6], from which our database 
has been constructed. However, we believe that the 
know-how presented in this work can be extended to other 
high efficiency DSSCs as well as perovskite solar cells, 
where we consider this part as a future work.  

 

 

Fig.2 Random-forest machine learning algorithm used in 
optimizing the power conversion efficiency of DSSC[16] 
 

 

Fig.3 Actual efficiency against predicted efficiency 
resulted from the random forest machine learning 
model (The module prediction is plotted with respect 
to the perfect (hypothetical) prediction, where slope 
tends to one)  

 

Fig.4 Predicted optimum J-V curve under effective 
thickness of 7 μm and porosity of 63% against ex-
perimental data 
 

In conclusion, for enhancing and predicting the per-
formance of DSSCs, the random-forest algorithm pro-
vides both efficiency and flexibility to be applied. Opti-
mization for the mesostructured thin film layers were 
modelled using experimental data, and SCAPS 1-D 
simulation model. The machine learning modules was 
built using python random forest regressor algorism. 
Perfect matching between optimized predicted data and 
experimental results was observed with model accuracy 
tends to 99.87%. An optimized DSSC with 4.17% effi-
ciency was concluded under effective thickness of 7 μm 
and porosity of 63%.  

Statements and Declarations 

The authors declare that there are no conflicts of interest 
related to this article. 
 
References  

[1]   SÁNCHEZ M, FRANCISCO J, STEINER M, et al. 
Worldwide energy harvesting potential of hybrid 
CPV/PV technology[J]. Joule, 2021, 24(7) 971-987. 

[2]    AHMAD K S, NAQVI K S, JAFFRI S B. Systematic 
review elucidating the generations and classifications of 
solar cells contributing towards environmental sustaina- 
bility integration[J]. Reviews in inorganic chemistry, 
2021, 41(1) 21-39. 

[3]    ABDELLATIF S O, JOSTEN S, KHALIL A S G, et al. 
Transparency and diffused light efficiency of 
dye-sensitized solar cells tuning and a new figure of 
merit[J]. IEEE journal of photovoltaics, 2020, 10(2)
522-530. 

[4]   MOUSTAFA M M, ISMAIL Z S, HASHEM E M, et al. 
Investigating the tradeoff between transparency and ef-
ficiency in semitransparent bifacial mesosuperstruc-
tured solar cells for millimeter-scale applications[J]. 
IEEE journal of photovoltaics, 2021, 11(5) 222-235. 

[5]    ABDELLATIF S, SHARIFI S, KIRAH K, et al. Refrac-
tive index and scattering of porous TiO2 films[J]. Mi-
croporous and mesoporous materials, 2018, 264 84-91. 

[6]    ABDELLATIF S, JOSTEN S, SHARIFI P, et al. Optical 



SABANA et al.                                                             Optoelectron. Lett. Vol.18 No.3 0151  

investigation of porous TiO2 in mesostructured solar 
cells[C]//Proceedings of Physics and Simulation of Op-
toelectronic Devices XXVI, International Society for 
Optics and Photonics, January 27-February 1, 2018, San 
Francisco, CA, USA. Washington SPIE, 2018
105260A. 

[7]    HATEM T, ISMAIL Z, ELMAHGARY Z, et al. Opti-
mization of organic meso-superstructured solar cells for 
underwater IoT² self-powered sensors[J]. IEEE transac-
tions on electron devices, 2021, 68(10) 5319-5321.  

[8]    MARRI A R, MARCHINI E, CABANES V D, et al. 
Record power conversion efficiencies for iron 
(II)-NHC-sensitized DSSCs from rational molecular 
engineering and electrolyte optimization[J]. Journal of 
materials chemistry A, 2021, 9(6) 3540-3554.   

[9]    SHAH S A A, GUO Z, SAYYAD M H, et al. Optimiz-
ing zinc oxide nanorods based DSSC employing diffe- 
rent growth conditions and SnO coating[J]. Journal of 
materials science materials in electronics, 2021, 32(2)  
2366-2372. 

[10]   WARD L, WOLVERTON C. Atomistic calculations and 
materials informatics a review[J]. Current opinion in 
solid state and materials science, 2017, 21(3) 167-176. 

[11]   MAHMOOD A, WANG J L. Machine learning for high 
performance organic solar cells current scenario and 
future prospects[J]. Energy & environmental science, 
2021, 14(1) 90-105. 

[12]  CHOUDHARY K, BERCX M, JIANG J, et al. Accele- 
rated discovery of efficient solar cell materials using 
quantum and machine-learning methods[J]. Chemistry 
of materials, 2019, 31(15) 5900-5908. 

[13]   SAHU H, MA H. Unraveling correlations between mo-
lecular properties and device parameters of organic so-
lar cells using machine learning[J]. The journal of 
physical chemistry letters, 2019, 10(22) 7277-7284. 

[14]   AROOJ Q, WANG F. Switching on optical properties of 

D-π-A DSSC sensitizers from π-spacers towards ma-
chine learning[J]. Solar energy, 2019, 188 1189-1200. 

[15]   WEN Y, FU L, LI G, et al. Accelerated discovery of 
potential organic dyes for dye-sensitized solar cells by 
interpretable machine learning models and virtual 
screening[J]. Solar RRL, 2020, 4(6) 2000110. 

[16]   AL-SABAN O, ABDELLATIF S O. Optoelectronic 
materials informatics utilizing random-forest machine 
learning in optimizing the harvesting capabilities of 
mesostructured-based solar cells[C]//Proceedings of 
2021 IEEE International Telecommunications Confer-
ence (ITC-Egypt), July 13-15, 2021, Alexandria, Egypt. 
New York IEEE, 2021 1-4. 

[17]  RODRIGUEZ-GALIANO V, SANCHEZ-CASTILLO M, 
CHICA-OLMO M, et al. Machine learning predictive 
models for mineral prospectivity an evaluation of 
neural networks, random forest, regression trees and 
support vector machines[J]. Ore geology reviews, 2015, 
71 804-818. 

[18]   EID A A, ISMAIL Z S, ABDELLATIF S O. Optimizing 
SCAPS model for perovskite solar cell equivalent cir-
cuit with utilizing Matlab-based parasitic resistance es-
timator algorithm[C]//Proceedings of 2020 IEEE 2nd 
Novel Intelligent and Leading Emerging Sciences Con-
ference (NILES), October 24-26, 2020, Giza, Egypt. 
New York IEEE, 2020 503-507. 

[19]   HASSAN M M, SAHBEL A, ABDELLATIF S O, et al. 
Toward low-cost, stable, and uniform high-power LED 
array for solar cells characterization[C]//Proceedings of 
New Concepts in Solar and Thermal Radiation Conver-
sion III, International Society for Optics and Photonics, 
August 24-September 4, 2020, California, USA. Wash-
ington SPIE, 2020 114960Q.  

[20]   KIM J Y, LEE K, COATES N E, et al. Efficient tandem 
polymer solar cells fabricated by all-solution process-
ing[J]. Science, 2007, 317(5835) 222-225. 

 


