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Unsupervised image-to-image translation is a challenging task for computer vision. The goal of image translation is to 

learn a mapping between two domains, without corresponding image pairs. Many previous works only focused on 

image-level translation but ignored image features processing, which led to a certain semantics loss, such as the 

changes of the background of the generated image, partial transformation, and so on. In this work, we propose a 

method of image-to-image translation based on generative adversarial nets (GANs). We use autoencoder structure to 

extract image features in the generator and add semantic consistency loss on extracted features to maintain the 

semantic consistency of the generated image. Self-attention mechanism at the end of generator is used to obtain 

long-distance dependency in image. At the same time, as expanding the convolution receptive field, the quality of the 

generated image is enhanced. Quantitative experiment shows that our method significantly outperforms previous 

works. Especially on images with obvious foreground, our model shows an impressive improvement. 
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The task of image-to-image translation is to transform an 

image from domain A to domain B, as shown in Fig.1. In 

recent years, the emergency of deep learning provided 

new ideas for this task. Previous works often required a 

large number of paired images and deliberately designed 

loss functions. However, in most cases, pairs of images 

are difficult to obtain, and specific loss functions are 

often unable to process images with different 

characteristics well. In fact, as long as we know the 

distribution of the two kinds of data, we can complete the 

transformation. The appearance of generative adversarial 

nets (GANs)[1] solved this problem. 

GANs have shown extraordinary power in 

image-to-image translation. These methods are divided 

into supervised methods and unsupervised methods. 

Supervised methods usually need a large number of pairs 

of images. In general, it is not easy to obtain a large 

number of pairs of images, and cannot guarantee that the 

images completely correspond to each other. ISOLA et 

al[2] utilized conditional GANs to learn the mapping from 

input image to output image. Image-to-image translation 

was taken as a pixel-to-pixel mapping problem. They set 

conditions on the input image to get the corresponding 

output image. Unsupervised methods try to learn the 

distribution of different data and achieve the goal of 

image translation by fitting the distribution of data. 

 
Fig.1 Examples of image translation 

 

Based on the intuition that two kinds of distributed 

data are transformed into each other, CycleGAN[3] used 

the loss of cyclic consistency to transform images. In fact, 

both supervised and unsupervised methods only focused 

on image level conversion but ignored the processing of 

image features, which led to the changes of image 

semantics at the same time of image translation. Fig.2
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shows several fail cases of CycleGAN. 

 

 

Fig.2 Fail cases of CycleGAN with the background 
changed 
 

In this paper, we propose a novel unsupervised 

image-to-image translation method, which adds the 

semantic consistency loss function to the generator in 

manner of end-to-end, so that the model focuses on more 

important not only pixel level features, but also semantic 

level features. Besides, a self-attention mechanism is 

added to the tail of the generator to obtain long-distance 

dependence and improve the quality of image generation. 

The main innovations of this paper are as follows. 

(1) We propose a semantic undeformed loss function 

for end-to-end training of constrained unsupervised 

image transformation to maintain the semantic 

consistency between the original graph and the generated 

graph. 

(2) Our self attention module is used to increase the 

receptive field of convolution network, obtain 

long-distance dependence and optimize the quality of 

image generation. 

(3) In many unsupervised transformation tasks, the 

stupid method has higher image transformation quality 

than other most advanced methods. 

GANs have been adopted in many images processing 

tasks, and have shown impressive results in image 

generation image inpainting, image editing, and so on[4]. 

The key to the success of GANs is to use the idea of 

zero-sum game. The task of generator is to make fake 

image, while the task of discriminator is to recognize the 

generated image and the real image. With the training 

process, the image produced by generator is closer to the 

real image, which deceived the discriminator and finally 

achieved Nash equilibrium. 

Autoencoder can be used to extract the latent 

representations of data. It has been used in feature 

extraction, data denoising and many other fields[5]. 

LARSEN et al[6] combined variational autoencoders 

(VAEs) and GANs into an unsupervised generation 

model, to learn representations to better measure 

similarities in data space. ZHAO et al[7] proposed to 

deploy an energy-based model in the latent space of a 

pretrained autoencoder for image-to-image translation. 

Considering that autoencoder is often used for feature 

extraction, in our generator, a 256×256 image is 

subsampled three times and then enters nine rest blocks. 

The corresponding features are obtained. The decoder 

obtains a 256×256 image after five times of 

deconvolution. 

Inspired by the mechanism of human attention, the 

neural network also uses attention mechanism to extract 

features from images, text and so on. Attention model 

has been widely used in many kinds of deep learning 

tasks, such as natural language processing and image 

recognition. Convolutional neural network (CNN) has 

the limitation of receptive field, so attention mechanism 

is used to obtain long-distance dependence of image. In 

recent years, there are also many works that combine 

GANs and attention mechanism to achieve 

unprecedented results. CHEN et al[8] utilized the 

attention network to predict spatial attention maps of 

images and translated images by transformation network. 

ZHANG et al[9] obtained the long-distance relationship 

on the image by self-attention. 

The original GANs used the minimax game in the 

form of log to obtain the Nash equilibrium, which leads 

to difficulties in training, where the loss of generator and 

discriminator cannot indicate the training process, and it 

lacks of diversity in generating samples. Wasserstein 

GAN[10,11] replaced log loss with Wasserstein distance. 

MAO et al[12] used the least square loss to stabilize the 

training process of GANs. In our network, least squares 

GAN (LSGAN) and PatchGAN are combined. 

Fine-grained experiments confirm that this is effective. 

The attention mechanism in neural networks is 

generally applied to the deeper part of neural networks, 

because the deeper networks can learn more detailed 

features, after the generator extracts image features. In 

the decoder part, we use self-attention mechanism, which 

makes our network pay more attention to the main 

features of the image and enables our network to capture 

long distance dependence. Self-attention first calculated 

the correlation of each pixel in the image. 
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where sij indicates the correlation between each pixel and 

other pixels. The image features from the previous 
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hidden layer 
C Nx ��� , where C is the number of 

channels and N is the number of feature locations of 

features from the previous hidden layer. Both Wf and Wg 

represent 1×1 convolution. 
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where the image is restored by matrix operation. The 

output of the attention layer is 
1 2( , ,... ..., )j No o o o o� � 

C N�� , and Wh and Wv represent 1×1 convolution. 
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where for each image x from domain X, the image 

translation cycle should be able to bring x back to the 

original image. CycleGAN used the loss of cyclic 

consistency to translate images. Both G(X) and F(X) 

represent the generator. 

The loss function of CycleGAN cycle consistency is 

mainly applied to the image, but there is no special  

processing in the aspect of features. The unconstrained 

features will cause the deep convolution neural network 

cannot well represent the semantic features when 

updating the weights. Therefore, this paper further adds 

the loss function of semantic consistency in the above 

process, and the whole network adopts the structure of 

autoencoder. Deep convolution neural network can learn 

the advanced features of images[13]. We use the 

autoencoder structure to learn the latent representation of 

images. Fig.3 shows the general framework of our model. 

Encoder A is the encoder of the A domain, and Feature 

A is the feature extracted by the encoder for the input. 

We can understand that Feature A is the semantic of the 

input. We get the transformed image by decoding. 

According to the above description, we input fake 

images into the Encoder B of the B domain to get the 

corresponding feature. Then we make the consistency 

loss function of Feature A and Feature B. We can 

strengthen the relationship between A and B 

semantically, so as to solve the problem of semantic 

transformation caused by the transformation of target 

domain proposed at the beginning, that is, the semantics 

after transformation changes compared with the 

semantics of source domain.

 

Fig.3 General framework of our network (The generator can be seen as autoencoder to extract features of images 
and generate the output; Semantics loss is added to maintain the semantics of images) 
 

The training process of traditional GANs is very un- 

stable, to a large extent, because its objective function 

may have gradient dispersion, especially when the 

objective function is minimized, which makes it difficult 

to update the generator. LSGAN solved this problem by 

samples of decision boundary of penalty principle. 
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where D is a generator, G is a discriminator, and D and 

G simultaneously perform min training as to competitors  

with value function of minVLSGAN, with pz as the input 

prior distribution and pdata(x) as the training data 

distribution. Finally, a, b and c are hyper-parameters, 

a=c=1, b=0. The LSGAN model is trained in an 

alternating fashion by minimizing the hinge version of 

the adversarial loss. 

In general, the network structure of GANs is not suitable 

for the image field which requires high resolution and high 

detail preservation. Some researches have designed 

PatchGAN according to this situation. The main difference 

of this GAN is the discriminator. Generally, GANs only 

needs to output a true or false vector, which represents the 

evaluation of the whole image. However, PatchGAN 

outputs a matrix with size of N×N, each element of the 

matrix with size of N×N. We design our discriminator by 

combining PatchGAN and LSGAN. 

In this section, we will show more training details, and 
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the advantages of our approach. Two time-scale update 

rule (TTUR)[13] used different learning rates for 

discriminators and generators. Generally, generators use 

lower update rate, and discriminators use higher update 

rate. With this method, we can perform discriminator and 

generator updates in a rating of 5:1, and only the learning 

rate needs to be modified. We use the learning rate of 

0.001 for generator and 0.002 for discriminator and 

Adam optimizer, batch size of 8 for 400 000 iterations. 

Fig.4 shows the loss curves. The original GAN is a 

complex generation model. GAN learning is a game 

between generator and discriminator. Since the training 

of GAN is a game, its gradient descent may fail to 

converge. At that time, when using two stages, GAN 

converged to the stable local Nash equilibrium, but the 

loss value is not the best[14]. When using the semantic 

loss proposed in this paper, the generator and 

discriminator are optimized at the semantic level, so the 

network can quickly converge to an optimal model. 

 

 

 

 

Fig.4 Loss curves in training process 

To evaluate our methods, we conducted extensive 

experiments on the horse-to-zebra and orange-to-apple 

datasets. In order to evaluate the quality of the generated 

image, we calculated the peak signal-to-noise ratio 

(PSNR) and structural similarity (SSIM) of the generated 

image. Tab.1 shows the results. The Frechet inception 

distance (FID)[13] is a measure to calculate the distance 

between the real image and the feature vector of the 

generated image. To illustrate the advantages of our 

method, we calculate the FID of baselines. We use the 

same training steps to calculate the FID of baselines. 

From Fig.5, we can see that other methods lost a lot of 

semantic consistency, because the background has 

changed a lot, and our method has not lost semantic 

consistency while transforming the target. 

 

Tab.1 Comparison with baselines 

Data set Method PSNR SSIM FID 

CycleGAN[3] 18.43 0.75 41.5 

MUNIT[15] 19.44 0.79 39.5 

AgGAN[16] 22.63 0.81 35.6 
Horse2zebra 

Ours 25.59 0.93 33.6 

CycleGAN[3] 15.51 0.54 59.7 

MUNIT[15] 17.26 0.59 54.1 

AgGAN[16] 19.24 0.61 44.7 

Orange2apple 

Ours 21.52 0.68 38.4 

 

  In order to strengthen the connection between the 

generated image and the original image, L1 loss is used 

at the end of the network. In the process of back 

propagation, L1 loss promotes the semantic consistency 

between the generated image and the original image. The 

attention mechanism in the model is used to increase the 

receptive field of convolution network, so as to improve 

the quality of image generation. Fine-grained 

experiments show that our method is very effective. 

Tab.2 shows the results. After removing a part of the 

model, we retrained it. With learning rate of 0.001, we 

trained 400 000 steps and recalculated our evaluation 

metrics. As a result, in Tab.2, we can see that when only 

L1 loss is added, the performance of the model still 

exceeds that of baselines. After the attention mechanism 

is added, the performance of the model is further 

improved. When the two are combined, the best result is 

obtained, which shows that under the semantic 

constraints of attention, GAN model will optimize the 

target more accurately according to the target semantics, 

so the optimization result of the network model will be 

better. 
Our model has a total of 6.5M parameters and is 

implemented on TensorFlow v1.14, CUDNN v7.0,   

CUDA v9.0. We performed all training runs on central 

processing unit (CPU) Intel(R) Xeon(R) CPU E5-2697 

v3 (2.60 GHz) and graphics processing unit (GPU) GTX 

1080. Our full model ran at 0.35 second per frame on
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GPU and 1.2 seconds per frame on CPU for images with 

resolution of 256×256. 

 

 
Fig.5 Translation results of CycleGAN[3], MUNIT[15], 
AgGAN[16], and our proposed method 

 
Tab.2 Albation study 

Data set Method PSNR SSIM FID 
GAN+Semantic loss 22.34 0.83 39.6 

GAN+Attention 22.46 0.88 36.4 
Horse2zebra 

GAN+Semantic 

loss+Attention 
25.59 0.93 33.6 

GAN+Semantic loss 14.52 0.55 54.2 

GAN+Attention 17.76 0.59 43.6 
Orange2apple 

GAN+Semantic 

loss+Attention 
21.52 0.68 38.4 

 

Fig.6 shows several examples of failure. We can see 

that the apple to orange does not perform as well as horse 

to zebra. This may be due to the obvious difference 

between horse and zebra. How to learn less obvious 

features is still our future work. Due to the lack of certain 

types of data, our model cannot learn certain 

distributions. How to learn with a small number of 

samples is still a prominent problem. 

In this paper, we proposed an unsupervised image 

translation method based on encoder-decoder structure. 

L1 loss on semantics features of the model ensures 

semantic consistency, and the use of attention 

mechanism enhances the quality of the generated image. 

  

 

 

Fig.6 Fail cases of our model 
 

Although our method can generate more realistic images, 

our approach has good generalization ability in many 

cases and can transform high-quality images. We 

propose a method to improve the quality of image 

generated by translation. Our model is superior to the 

existing unsupervised models in image quality and the 

original semantics can be reserved. 
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