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Deep generative prior (DGP) is recently proposed for image restoration and manipulation, obtaining compelling results 

for recovering missing semantics. In this paper, we exploit a general solution for single image deblurring using DGP 

as the image prior. To this end, two aspects of this object are investigated. One is modeling the process of latent image 

degradation, corresponding to the estimation of blur kernels in conventional deblurring methods. In this regard, a Re-

blur2Deblur network is proposed and trained on large-scale datasets. In this way, the proposed structure can simulate 

the degradation of latent sharp images. The other is encouraging deblurring results faithful to the content of latent im-

ages, and matching the appearance of blurry observations. As the generative adversarial network (GAN)-based me- 

thods often result in mismatched reconstruction, a deblurring framework with the relaxation strategy is implemented to 

tackle this problem. The pre-trained GAN and pre-trained ReblurNet are allowed to be fine-tuned on the fly in a 

self-supervised manner. Finally, we demonstrate empirically that the proposed model can perform favorably against 

the state-of-the-art methods. 
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Image deblurring problem has recently attracted conside- 

rable attention in the imaging community, where the blur 

is caused by camera shake or object motions. Many re-

searches have been devoted to addressing this classical 

problem in the last decade. The progress in this field can 

be attributed to the advancement of efficient inference 

algorithms, various natural image priors, and more gene- 

ral motion blur models[1]. However, it remains a chal-

lenging computer vision problem, since blind image de-

blurring is a typical ill-conditioned inverse problem. Our 

goal in this paper is to propose a more general solution 

for single image deblurring using a generative adversa- 

rial network (GAN) trained on large-scale natural images 

as the image prior. 

Although lots of attempts have been presented for im-

age deblurring, there are still gaps toward an image prior 

that captures rich images semantics, such as the sparse 

priors, the total variation (TV) prior, the edges-based 

priors and so on[2]. Recently, the priors based on deep 

learning have been used for image deblurring. The deep 

image prior (DIP) is proposed in Refs.[5] and [6] to cap-

ture low-level image statistics and show powerful image 

denoising, super-resolution, inpainting, etc. Subsequently, 

the deep generative prior (DGP) is presented in Ref.[7] 

that provides compelling results to restore missing se-

mantics, e.g., color, patch, resolution of various degraded 

images. 

However, these deep priors mentioned above cannot 

be directly applied for single image deblurring due to the 

DIP or DGP network may be designed to generate natu-

ral images. Still, it is limited to capture the prior of blur 

kernels. In Ref.[6], the authors developed a fully con-

nected network (FCN) to capture the prior of uniform 

motion blur. Nevertheless, DIP is intrinsically limited by 

the current statistics of the input images. It is impossible 

that Ref.[6] could perform on images acquired "in the 

wild" as a general deblurring solution. In Ref.[7], DGP is 

presented for image restoration and manipulation as the 

image prior. Although compelling results have been 

achieved for image restoration (e.g., super-resolution, 

inpainting), some limitations lead to mismatched recon-

struction. The reason is that the training distribution of 

sharp images inevitably limits the GAN. Moreover, we 

cannot obtain the complete training dataset for image 

deblurring due to the unknown image degradation pro- 

cess. Therefore, DGP cannot be directly applied for sin-

gle image deblurring. Otherwise, it may produce latent 

images’ unfaithful content. 

For presenting a general solution for single image 

blind deblurring by using DGP as the image prior, two 

problems should be tackled, namely, modeling the pro- 

cess of latent image degradation, encouraging deblurring 
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results faithful to the content of latent images, and 

matching the appearance of blurry observations. The 

GAN-based methods tend to produce excellent results 

due to their ability to capture sharp images’ natural dis-

tribution. As shown in Fig.1, we select test images from 

CelebA[8] to verify the effectiveness of the proposed so-

lution. 

To tackle these two problems, we first design a Re-

blur2Deblur network to model the process of image deg-

radation, training it on the ImageNet dataset[9]. It is worth 

pointing out that the Reblur2Deblur should be applied to 

deblur images "in the wild" at the cost of reducing the 

performance of deblurring results, not just for do-

main-specific deblurring like Ref.[10]. It can be observed 

that Reblur2Deblur network performs worse compared 

with our method, and there are some apparent artifacts 

on the deblurring results due to its general applicability. 

Then we implement the single image deblurring by using 

DGP and pre-trained ReblurNet networks through relax-

ing the assumption of existing GAN-inversion methods. 

Primarily, we allow the generator and pre-trained Re-

blurNet to be fine-tuned on the fly in a self-supervised 

manner. It can be observed from Fig.2 that the deblurred 

result generated by pre-trained GAN in which the gene- 

rator is fixed has some differences of color and texture 

compared with the blurry observation. In contrast, our 

method’s deblurring result performs better, having the 

almost same color and texture.   
 

 

Fig.1 Comparison of deblurring results on the dataset 
of CelebA[8]: (a) Blurry image; (b) Image generated by 
pre-trained GAN; (c) Deblurring results by the Re-
blur2Deblur network; (d) Deblurring results by our 
model  
 

 

Fig.2 Deblurring results generated by the pre-trained 
GAN: (a) Blurry image; (b) Deblurred result by the 
pre-trained GAN from Ref.[7] where the GAN genera-
tor is fixed; (c) Deblurred result by our model where 
the GAN generator is allowed to be fine-tuned; (d) 
Ground truth 

In this paper, we adopt a self-supervised manner to 

enforce the generator to produce latent sharp images. The 

diagram of the proposed model is illustrated in Fig.3. 

Our contributions are summarized as below. 

(1) A specific solution for modeling the process of la-

tent image degradation is presented, corresponding to the 

estimation of blur kernels in conventional deblurring 

methods. 

(2) A relaxation strategy is adopted while implemen- 

ting the single image deblurring using the pre-trained 

GAN and pre-trained ReblurNet. The generator and Re-

blurNet are allowed to be fine-tuned on the fly in a 

self-supervised manner. 

(3) We verify empirically that our method can perform 

favorably against state-of-the-art methods on several 

different datasets, indicating the proposed model’s gene- 

ral applicability for single image deblurring. 

The proposed deblurring network uses DGP as the 

image prior, and the overall restoration scheme is illus-

trated in Fig.3. Two components are the key, ReblurNet 

and the backward with relaxation strategy. The detailed 

description will be given as follows. 

 

  
Fig.3 Illustration of the proposed image deblurring net-
work 

 

Motivated by Refs.[10] and [11], Reblur2Deblur is 

presented using discrete disentangle representation in a 

supervised manner. As shown in Fig.4, the content and 

blur features are achieved from the blurred images using 

the content encoder EB
c and blur encoder EB

a. Meanwhile, 

the content features of sharp images are obtained by 

content encoders ES
c. The deblurring results are gene- 

rated by passing content features and blur features of 

blurred images through DeblurNet. The re-blurred results 

are generated by taking the content features of sharp im-

ages and the blur features of blurred images as the input 

of ReblurNet. (B, S) and ˆˆ( , )B S  are pairs of blurred and 

sharp images used for training. The training image pairs 

are produced by the method of Ref.[12], and the sharp 

images are randomly selected from the dataset of Image- 

Net.  

Based on the above analysis, the content encoders ex- 
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tract the content information, as the blur encoders extract 

the blur information from blurred images. However, 

since the sharp images don’t have any blur information, 

the content encoder ES
c should be a perfect content ex-

tractor. Therefore, for learning how to disentangle the 

content features from blurred images effectively, we 

share the weights of the last layers of these two content 

encoders so that the content encoders can project the 

content features of both domains onto a shared space. 

However, this design of sharing weights by itself does 

not guarantee that the blur encoder extracts only blur 

features. It may encode content or other features as well. 

Inspired by Refs.[10] and [11], a Kullback-Leibler (KL) 

divergence loss is added to ensure that the blur encoder 

extracts as little content information as possible. The 

training details are described as follows. 

 

 
Fig.4 Overview of the proposed Reblur2Deblur 
framework 

 

To ensure the general applicability and ease to imple-

mentation of the proposed Reblur2Deblur, mean square 

error (MSE) is used as the loss function in the training 

process. Since the pairs of blurred images and sharp im-

ages exist, the training is supervised. Thus, the loss func-

tion of self-reconstruction and cross-reconstruction can 

be formulated as  

� � � �Rec   
, ,MSE MSEB B S S� �� � �L L L         

     � � � �ˆ ˆ ˆ ˆ, , ,MSE MSES S B B� ��L L                 (1) 

where zB
c=EB

c(B) and zB
a=EB

a(B) represent the blurred 

image's content and blur features, B'=R(zB
c, zB

a) 

represents the self-reconstruction, S'=D(zB
c, zB

a) 

represents the deblur-reconstruction, R denotes the 

blurring process by using ReblurNet, and D indicates the 

deblurring process using DeblurNet. Correspondingly, 

the self-reconstruction of the sharp image Ŝ  can be 

represented as Ŝ'=D(zS
c, zB

a), and the re-blur 

reconstruction as B̂� =R(zS
c, zB

a). 

As mentioned above, the KL divergence loss can be 

represented as  

 � �2 2 2

KL

1

1
log 1 ,

2

N

i i i
i
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�

� �� � 	 	
 ��L             (2) 

where μ and σ are the mean and standard deviation of the 

blur features zB
a, and N is the dimension of zB

a. In the end, 

combining Eq.(1) and Eq.(2), the full objective function 

can be written as 

 KL Rec ,�� �L L L                           (3) 

where λ is the parameter to balance the importance of 

KLL and Rec L . 

The architecture and implementation details refer to 

Ref.[10], and the same network architectures are used. 

Each content encoder consists of three strided convolu-

tion layers and four residual blocks. The blur encoder is 

composed of four strided convolution layers and a fully 

connected layer. For the ReblurNet and DeblurNet, their 

architectures are symmetric to the content encoders, con-

sisting of four residual blocks and three transposed con-

volution layers. For training, sharp images are selected 

randomly from the dataset of ImageNet[9] and blurred by 

the method of Ref.[12]. The training process is imple-

mented in the PyTorch framework on a personal com-

puter (PC) equipped with one NVIDIA RTX 2080Ti 

graphics processing unit (GPU). 

In this subsection, we conduct a blurred image restora-

tion using pre-trained GAN (DGP as the image prior) 

and pre-trained ReblurNet (as shown in Fig.4) with a 

relaxation strategy. It allows the pre-trained GAN and 

ReblurNet to be fine-tuned on the fly in a self-supervised 

manner by this relaxation strategy (the data flow of the 

updating process is shown in Fig.3). A detailed descrip-

tion of DGP and the relaxation strategy is shown below. 

The restoration of the latent image is realized by using 

GAN-inversion, which can be formulated as  

� �* argmin ( , ( ; ))= argmin ( , ( ( ; ))),
i i

E G R G
 

�
� �z z

z x z θ x z θL    

� �* *; ,G�x z θ                              (4) 

where �x  is the blurred observation, x* is the restoration 

result, G represents the GAN generator, θ is the parame-

ter of the GAN generator, z is the latent vector as the 

input of G, R(∙) is an image degradation transform, and 

 is a distance metric such as MSE. Ideally, the de- 

gradation transform R(∙) is known and G is powerful 

enough to capture natural images’ significant features. In 

that case, Eq.(4) can force z* into the latent space, and 

then produce the reconstruction result in 

high-performance by using z*. However, in practice, it is 

not always the case. 

Firstly, the degradation transform R(∙) is unknown, 

and the pre-trained ReblurNet has no capacity for accu-

rately modeling the process of image degradation. Then, 

the approximated manifold of the restoration result gene- 

rated by the GAN-inversion methods may not follow the 

actual one if the GAN generator is fixed in Eq.(4). If the 

generator is fixed, its inversion cannot faithfully recon-

struct the unseen and complex images.  

The relaxation strategy is used for reconstruction. It 

allows the pre-trained GAN and pre-trained ReblurNet to 
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In contrast, our model can achieve a better visual per-

formance, since a well-trained GAN generator can still 

capture rich statistics of latent sharp images, which vali-

date our method’s effectiveness to a certain extent. 

Tab.1 shows the quantitative comparison using ave- 

rage PSNR and SSIM. As can be observed, our approach 

takes the second among all methods in terms of average 

PSNR and SSIM. Our model performs better than those 

in Refs.[2] [12], verifying that DGP is more potent than 

these hand-crafted priors for image deblurring. Ref.[10] 

performs slightly better than our model, as it is specific 

for face deblurring, while others are generic deblurring 

methods. 

 

 
 

Fig.6 Visual comparison with state-of-the-art methods 
on the dataset of CelebA[8]: (a) Blurred images; (b) 
Deblurring results generated by Ref.[14]; (c) Deblur-
ring results generated by Ref.[10]; (d) Deblurring re-
sults generated by our model; (e) Ground truth 
 
Tab.1 Quantitative performance comparison with 
state-of-the-art methods on the CelebA dataset 
 

Methods PSNR SSIM 

Ref.[14] 18.51 0.56 

Ref.[2] 16.79 0.47 

Ref.[15] 17.52 0.54 

Ref.[10] 20.79 0.67 

Ref.[12] 19.76 0.61 

Ours 20.64 0.64 

 
A general solution is proposed for image blind deblur-

ring by using DGP as the image prior, which can be di-

vided into two steps, namely, modeling the process of 

latent image degradation and deblurring with a relaxation 

strategy by using a pre-trained GAN and pre-trained Re-

blurNet. Firstly, the Reblur2Deblur network is proposed 

to simulate the degradation of sharp images and trained 

on the ImageNet dataset. Then, the relaxation strategy 

allows the parameters of these two pre-trained networks 

to be fine-tuned in a self-supervised manner. In this way, 

the proposed model encourages deblurring results faith-

ful to latent images’ content and matching the appea- 

rance of blurred observations. In the end, we verify em-

pirically that our method can perform favorably against 

the state-of-the-art methods, indicating the general ap-

plicability of the proposed model for single image de-

blurring. 
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