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Three-dimensional human pose estimation (3D HPE) has broad application prospects in the fields of trajectory predic-
tion, posture tracking and action analysis. However, the frequent self-occlusions and the substantial depth ambiguity in 
two-dimensional (2D) representations hinder the further improvement of accuracy. In this paper, we propose a novel 
video-based human body geometric aware network to mitigate the above problems. Our network can implicitly be 
aware of the geometric constraints of the human body by capturing spatial and temporal context information from 2D 
skeleton data. Specifically, a novel skeleton attention (SA) mechanism is proposed to model geometric context de-
pendencies among different body joints, thereby improving the spatial feature representation ability of the network. To 
enhance the temporal consistency, a novel multilayer perceptron (MLP)-Mixer based structure is exploited to compre-
hensively learn temporal context information from input sequences. We conduct experiments on publicly available 
challenging datasets to evaluate the proposed approach. The results outperform the previous best approach by 0.5 mm 
in the Human3.6m dataset. It also demonstrates significant improvements in HumanEva-I dataset.  
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Three-dimensional human pose estimation (3D HPE) 
provides abundant human 3D structure information, and 
has become a crucial and hot research topic in recent 
years. 3D HPE has broad application prospects in the 
fields of trajectory prediction, posture tracking and ac-
tion analysis. Despite the tremendous success[1-4] of 
well-designed deep learning paradigms in recent years, 
the 3D HPE task still faces challenges from the substan-
tial depth ambiguity and the frequent self-occlusions in 
the two-dimensional (2D) representations. Previous ap-
proaches[5-8] typically decomposed the 3D HPE task into 
2D HPE and 2D-to-3D pose lifting. Decoupling the task 
seems to reduce the difficulty of the problem. However, 
in some cases with severe self-occlusions, it aggravated 
the impact of depth ambiguity on the 3D HPE task, since 
multiple 3D poses could be mapped to the same 2D 
skeleton. 

To alleviate the depth ambiguity, several early meth-
ods[9-11] utilized geometric constraints among different 
body joints to ensure the network can predict a plausible 
3D pose. Graph convolutional network (GCN)[12-14] is 
utilized to capture the implicit kinematic information in 
2D keypoints. For graph-structured data, it has a good 
feature extraction capability. However, CI et al[15] pro-
posed that the inherent weight sharing scheme in GCN 
limited its feature representation ability, resulting in its 
poor performance on the 3D HPE task. In this paper, a 

novel attention mechanism is proposed to effectively 
improve the spatial feature representation ability of the 
network and further alleviate the depth ambiguity. 

In addition, we find that existing methods for video 
3D HPE often yield incoherent and jittery predictions. A 
major reason behind this is the high variability and 
nonlinearity of human dynamics that cause the frequent 
occurrence of self-occlusions. Recently, exploiting the 
temporal context information among consecutive frames 
to mitigate the effects of self-occlusions has been de- 
monstrated as an effective technique[7,16,17]. WANG et 
al[16] proposed a U-shaped GCN network to learn the 
long-short term motion information among consecutive 
frames and achieved highly competitive results. Several 
methods[7,17] rely on dilated temporal convolutions to 
model long-term temporal context features and achieve 
significant performance improvement. But these methods 
inherently have limited temporal connectivity. Recently, 
the multilayer perceptron (MLP)-Mixer[18] is exploited 
for image classification due to its high efficiency, excel-
lent scalability and powerful feature modeling capabili-
ties. However, how to take advantage of the capacity of 
the MLP-Mixer for 3D HPE remains a challenging task.  

Furthermore, existing works ignore the fact that spatial 
configuration constraints and temporal correlations are 
two types of complementary information. It is obviously 
a sub-optimal solution to consider only one of them. In



·0314·                                                                          Optoelectron. Lett. Vol.18 No.5 

this work, to take full advantage of spatial-temporal in-
formation, we design a novel video-based human body 
geometric aware network for the 3D HPE task. We in-
troduce a novel skeleton attention (SA) mechanism 
which is used to adaptively identify the weight of the 
joints in the pose graph. Next, our network learns the 
prior knowledge of human structure based on the SA 
mechanism to improve the spatial representation ability 
of the network. Moreover, we design a novel temporal 
MLP-Mixer module to model the long-range temporal 
context dependencies among each frame in the entire 
sequence. Our approach exploits the spatial context con-
straints as well as the temporal context consistency for 
3D HPE. The spatial-temporal information can effec-
tively alleviate the depth ambiguity and self-occlusion 
problems, and significantly improves the accuracy. 

Recent state-of-the-art approaches[5,6,19] typically rely 
on the off-the-shelf 2D human keypoints detectors to 
first detect the 2D keypoints from the image and then lift 
the 3D pose from the predicted 2D joints. MARTINEZ et 
al[5] directly predicted the 3D human pose based on 2D 
keypoints via a simple but effective fully connected re-
sidual neural network. CHEN et al[19] treated the 3D HPE 
task as a data-driven matching problem, and exploited 
the nearest-neighbor algorithm to retrieve the optimal 3D 
human pose from the skeleton pool which is generated 
from 2D keypoints. Since these approaches benefit from 
intermediate supervision, they significantly outperform 
those methods that directly estimate 3D pose from im-
ages. Therefore, we adopt the two-stage pose estimation 
paradigm for the 3D HPE task. Due to the excellent fea-
ture modeling performance of GCN on non-European 
data, several GCN-based works[12,13] model 2D keypoints 
to extract global and local body geometric constraint 
features of each joint for the 3D HPE task. However, CI 
et al[15] first proposed that the internal weight sharing 
scheme in GCN would hinder the feature representation 
capability of GCN. Similar to GCN, our method relies on 
the topology of the pose graph to effectively capture hu-
man body geometric features. But our work has the fol-
lowing three distinct features. Instead of constructing an 
adjacency matrix to present the structure of human body 
topology, our approach builds a more generalized matrix 
to represent the correlation between 2D joints. The pro-
posed SA mechanism is employed to guide the fully 
connected neural network to predict the 3D human pose 
from the 2D keypoints. The pose encoder module essen-
tially forms a human pose graph, where the weight of 
each joint is dynamically adjusted using the SA mecha-
nism. 

Utilizing temporal information[20-23] from videos to 
mitigate the effects of self-occlusions is an effective 
technique. HOSSAIN et al[2] adopted long short-term 
memory (LSTM)[24] cells to construct a recurrent neural 
network. It was exploited to capture the temporal consis-
tency over a sequence. PAVLLO et al[7] adopted dilated 
temporal convolution to achieve a larger temporal recep-

tive field, which significantly improves the accuracy. 
LIU et al[17] proposed a novel temporal attention mecha-
nism to adaptively discriminate significant frames for 
efficiently extracting temporal consistency among frames. 
MLP-Mixer[18] was designed for the image recognition 
tasks. Compared with state-of-the-art convolutional net-
works, MLP-Mixer treats an image as a sequence of 
patches and achieves remarkable results. In this work, 
unlike existing temporal-based methods[7,17], which relied 
on dilated temporal convolutions to capture temporal 
dependencies, we utilize MLP-Mixer for learning tem-
poral context information across multiple frames.  

To further mitigate the impact of depth ambiguity and 
self-occlusions on the 3D HPE task. Some methods[20,23] 
utilized the spatial-temporal information in the 2D 
skeleton sequence to improve prediction accuracy. 
ZHENG et al[20] proposed a novel spatial-temporal net-
work architecture that utilized graph convolution and 
temporal convolution to alternately extract geometric 
constraint information and temporal context information 
implicit in 2D skeleton sequences. LIU et al[23] designed 
a transformer-based spatial-temporal network architec-
ture, which can effectively extract the spatial correlation 
from 2D keypoints and the temporal context information 
from all input frames. All of the above methods achieved 
significant performance improvements. Inspired by this, 
our approach effectively integrates both temporal and 
spatial correlations into a neural network and utilizes it 
for the 3D HPE task. 

The overall network framework is illustrated in Fig.1. 
In the body geometric aware module, the coordinates of 
each joint in the 2D skeleton are first projected to the 
high-dimensional embedding space through linear pro-
jection operation, and then N stacked pose encoders are 
utilized to extract the geometric dependencies of each 
joint in the 2D skeleton. Temporal MLP-Mixer module is 
used for learning global temporal context dependencies 
from the entire 2D skeleton sequence. In the end, a re-
gression head is utilized to regress the target 3D pose. 
Our approach takes 2D skeleton sequences 2f J X  

as input, where f is the input sequence length, J is the 
number of joints in a 2D skeleton, and it predicts the 3D 
joint positions in the target frame. 

The goal of the body geometric aware module 
(BGAM) is to learn the geometric dependencies among 
different body joints from a single 2D skeleton. Follow-
ing prior works[18,25], the coordinates of each joint are 
viewed as an individual patch and projected to the 
high-dimensional embedding space. Specifically, given 
the 2D pose data 2i Jx  of the ith frame in X, a lin-
ear projection operation is first utilized to transform the 
2D coordinates of each joint in xi into high-dimensional 
space. After that, we get 0

sJ Ci  , where Cs is the 
channel dimension, 0

i is then sent to N stacked pose 
encoders to further extract the spatial configuration con-
straints. 
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Fig.1 Overall network framework of the proposed scheme 

The overall pose encoder architecture is illustrated in 
the Fig.2(a). It integrates the features of multiple 
neighbor joints to further enhance the spatial representa-
tion ability of the network via the SA mechanism and 
prevents an implausible pose prediction. To take advan-
tage of the prior knowledge of human structure, we con-
struct a structure matrix J JS  with the following 
formula: 
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where S(q, p) is the element in the qth row and pth column in 
the structure matrix, MD(q, p) is the manifold distance be-
tween the joint q  and p  predefined in the pose graph as 
shown in Fig.2(b), K  is the predefined hyperparameter. 
For instance, according to the human pose graph illustrated 
in Fig.2(b), the manifold distance of the directly connected 
joints left-hip and hip is 1, and the manifold distance of the 
right-hip and left-hip is 2, because they are separated by 
hip. The structure matrix is utilized to generate an attention 
matrix which is used to weigh the importance of different 
joints in the pose graph as 

Att sig( Fla( )),s SW W                       (2) 

where 
2 1

Att
J W  is an attention matrix, 

2 2J J
s

W  
is a learnable matrix, sig(·) is a sigmoid activation func-
tion, and Fla(·) is a flatten function. Given a feature ma-
trix sJ C , the core function SA(·) in the pose en-
coder can be formulated as 

2 Att 1SA( ) ( ( )),  W W W                 (3) 

where 
2

1
J JW  and 

2

2
J JW  are learnable ma-

trixes, σ is an element-wise nonlinearity (Gaussian error 
linear units (GELU)[26]), and   is an element-wise 
multiplication operation. Thus the output of N stacked 
pose encoders can be expressed as 

T
4 3MLP ( ) ( ),S  W W                     (4) 
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s s s
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where LN(·) represents the layer normalization operator, 

3
s sC CW and 4

s sC CW  are learnable matrixes, 
and MLPS represents the MLP block operator in the pose 
encoder. The feature sJ Ci

N
  is generated after 

passing through each pose encoder where the network 
can continuously extract the spatial dependencies of each 
joint in a 2D skeleton.  

As the final layer in BGAM, the spatial fusion layer 
first normalizes i

N  by the LN(·) operator and then 
concatenates the features of each joint in i

N  to form a 
new feature vector 1 ( )sJ Ci   . After that, i will be 
forwarded to the temporal MLP-Mixer module which 
learns long-range temporal relationships across frames. 

Utilizing the temporal information in the video can 
significantly reduce jittery and incoherent predictions. 
Since the BGAM encodes rich spatial features for every 
frame, the temporal MLP-Mixer module is design for 
modeling temporal consistency among each frame in the 
entire input sequence. The BGAM processes all input 
frames in parallel and produces a feature set 

1 2{ , , ... , }f    , and then we concatenate each vec-
tor in   to form a new feature ( )

0
sf J C  .  

As the core modules of the MLP-Mixer, channel-mixing 
MLP and token-mixing MLP are designed to enable com-
munication between different channels and allow interac-
tion between different spatial locations, respectively. Spe-
cifically, the channel-mixing MLP acts on rows of β0 and 
shares information across all rows. Moreover, it enables 
cross-channel interaction which is important to efficiently 
learn channel attention. The token-mixing MLP acts on 
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columns of β0 to share spatial information across all 
columns. In our case, it interleaves features of each 
frame to enable interaction between input sequences. 
Each MLP block contains two fully-connected layers and 
a GELU activation function applied independently to 
each row of its input tensor. Thus the operation of the 
channel-mixing MLP can be expressed as 

T
4 3( ) ( LN( )),MC X W W X                  (7) 

 

and the token-mixing MLP can be expressed as 

2 1( ) ( LN( )),MT X W W X                   (8) 

where 1
sD fW , 2

sf DW , ( )
3

c sD J C W  and 
( )

4
s cJ C D W  are learnable matrixes, DS and DC are 

hidden dimensions, ( )MT X  and ( )MC X  are to-
ken-mixing and channel-mixing operations, respectively. 

  
Fig.2 (a) Architecture of the pose encoder; (b) Pose graph used in the pose encoder 

 
Our temporal MLP-Mixer module consists of L iden-

tical MLP-Mixer layers. Given an embedded feature β0, 
the processing procedure of temporal MLP-Mixer mod-
ule can be formulated as 

1 1( ) , 1,  2,  ...,  ,MT L      U           (9) 
T( ) , 1,  2,  ... ,  ,MC L      U U        (10) 

where T represents a transpose operation on tensors.   
Temporal fusion layer aims to fuse the extracted tem-

poral features ( )sf J C
L

  . To this end, it takes the 
average of the L  along the frame dimension to get a 

fusion vector 1 ( )
out

sJ C  .  
The goal of the regression head is to regress the body 

joint locations in 3D space from feature vector out . To 
this end, we adopt a layer norm followed by a linear 
layer to regress the 3D pose of the target frame 

3J  . 
A standard L2 loss is adopted to evaluate the error 

between the predicted 3D human body joints and ground 
truth 3D human body joints. It can be formulated as 

3D 1 2

1 ,J
i ii

L
J 

  P P                    (11) 

where i
P  and iP  are the ith 3D joint positions in the 

estimated and ground truth, respectively. 
  Both training and testing of our network are performed 
on two NVIDIA TITAN RTX graphics processing units 
(GPUs). For Human3.6M[27] dataset, following previous 
works[7,17], we adopt the cascaded pyramid network 

(CPN)[28] as 2D keypoints detector. Note that the Hu-
manEva-I[29] dataset uses a 15-joints skeleton produced 
by Detectron as inputs following[7]. Following Refs.[5,7], 
the horizontal flip data augmentation strategy is applied 
for training and testing. We adopt the ADAMW[30] opti-
mizer for training our network with 80 epochs. For hy-
perparameters, we set N=3, L=8, K=3, DS=256, and 
DC=512. We also set the initial learning rate to 10-4, and 
adopt cosine annealing[31] learning rate decay strategy to 
decrease the initial learning rate to 10-5.  

HumanEva-I and Human3.6M are utilized to evaluate 
our approach. Currently, Human3.6M is the largest pub-
licly available dataset for 3D human analysis, containing 
3.6 million video frames. It is captured from different 
viewpoints by 4 synchronized human motion capture 
cameras. The motions cover 15 daily activities (e.g. posing 
and eating) performed by 11 professional actors. Follow-
ing Refs.[7,17], using the same training and testing policy 
as previous works, we adopt subjects (S1, S5, S6, S7, S8) 
for training, and two subjects (S9, S11) are applied for 
testing in our experiments. HumanEva-I is a much smaller 
dataset, which contains 4 subjects performing 6 common 
actions (e.g. jogging and walking). Following the previous 
method[7], we conduct training/testing on three commonly 
used actions (Box, Jog, Walk) performed by three subjects 
(S1, S2, S3). Two standard protocols are involved in our 
experiment for both datasets. Protocol #1 measures the 
mean per-joint position error (MPJPE) in millimeters be-
tween the estimated and ground-truth 3D joint locations 
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without any transformation. Protocol #2 applies a similar-
ity transformation (Procrustes analysis) to the predicted 
3D pose before calculating the MPJPE, referred to 
PA-MPJPE. 

We report the results under 15 action categories in 
Tab.1, and the last column represents the average results 
for all actions. Our approach yields the lowest average 
error of 43.9 mm under Protocol #1, and it outperforms 
all previous methods. In addition, our approach achieves 
the second lower average error of 34.7 mm under Proto-
col #2. In particular, compared with Ref.[10] which ig-
nores the temporal consistency among frames, our model 
reduces the MPJPE by approximately 22%. This clearly 
demonstrates the advantage of using temporal context 
information to improve performance. In addition, the 

estimation accuracy outperforms that of the GCN-based 
Ref.[12] by 10% (4.9 mm) under Protocol #1. It is 
clearly demonstrated that our BGAM can more effec-
tively capture human-structure information from 
graph-structured data. To further investigate the impact 
of the noise data introduced by CPN on the 3D HPE ac-
curacy, we use the ground truth 2D keypoints as input. It 
can be seen from Tab.2 that the MPJPE is remarkably 
reduced from 43.9 mm to 30.7 mm, with an error reduc-
tion of approximately 30.1%. More importantly, under 
Protocol #1, our approach improves the performance 
reported in Ref.[20] by 0.6 mm, approximately 2% im-
provement. It indicates that as the noise in the 2D key-
points data decreases, our model can further boost the 
accuracy. 

 
Tab.1 Quantitative comparison between the proposed method and other methods in Human3.6M dataset (Abbre-
viations such as Dir. and Disc. in the table represent different action categories (e.g. Direction and Discussion) in 
Human3.6M[27] dataset) 

 
Protocol #1 Dir. Disc. Eat Greet Phone Photo Pose Pur. Sit SitD. Smoke Wait WalkD. Walk WalkT. Avg. 
PAVLAKOS et al[10] 48.5  54.4  54.4  52.0  59.4  65.3  49.9  52.9  65.8  71.1  56.6  52.9  60.9  44.7  47.8  56.2 
LUVIZON et al[4]  49.2  51.6  47.6  50.5  51.8  60.3  48.5  51.7  61.5  70.9  53.7  48.9  57.9  44.4  48.9  53.2 
CAI et al[12]  44.6 47.4 45.6 48.8 50.8 59.0 47.2 43.9 57.9 61.9 49.7 46.6 51.3 37.1 39.4 48.8 
PAVLLO et al[7]  45.2  46.7  43.3  45.6  48.1  55.1  44.6  44.3  57.3  65.8  47.1  44.0  49.0  32.8  33.9  46.8 
XU et al[11]  37.4 43.5 42.7 42.7 46.6 59.7 41.3 45.1 52.7 60.2 45.8 43.1 47.7 33.7 37.1 45.6 
LIU et al[17]  41.8  44.8  41.1  44.9  47.4  54.1  43.4  42.2  56.2  63.6  45.3  43.5  45.3  31.3  32.2  45.1 
ZHENG et al[20]  41.5 44.8 39.8 42.5 46.5 51.6 42.1 42.0 53.3 60.7 45.5 43.3 46.1 31.8 32.2 44.3 
Ours  41.6  43.8  39.5  42.4  45.5  53.7  40.7  41.0  56.0  62.4  44.3  42.9  44.1  29.8  30.2  43.9 

Protocol #2 Dir. Disc. Eat Greet Phone Photo Pose Pur. Sit SitD. Smoke Wait WalkD. Walk WalkT. Avg. 
PAVLAKOS et al[10] 34.7 39.8 41.8 38.6 42.5 47.5 38.0 36.6 50.7 56.8 42.6 39.6 43.9 32.1 36.5 41.8 
CAI et al[12]  35.7 37.8 36.9 40.7 39.6 45.2 37.4 34.5 46.9 50.1 40.5 36.1 41.0 29.6 33.2 39.0 
PAVLLO et al[7]  35.2 40.2 32.7 35.7 38.2 45.5 40.6 36.1 48.8 47.3 37.8 39.7 38.7 27.8 29.5 37.8 
XU et al[11]  31.0 34.8 34.7 34.4 36.2 43.9 31.6 33.5 42.3 49.0 37.1 33.0 39.1 26.9 31.9 36.2 
LIU et al[17]  32.3 35.2 33.3 35.8 35.9 41.5 33.2 32.7 44.6 50.9 37.0 32.4 37.0 25.2 27.2 35.6 
ZHENG et al[20]  32.5 34.8 32.6 34.6 35.3 39.5 32.1 32.0 42.8 48.5 34.8 32.4 35.3 24.5 26.0 34.6 
Ours 32.0 34.9 32.2 34.6 35.0 41.4 31.5 31.5 44.7 50.6 36.0 32.8 34.2 23.8 24.5 34.7 

 
The quantitative results on HumanEva-I are also re-

ported in Tab.3, where (-) represents that the corre-
sponding value is not provided in the original paper. Our 
method again achieves the lowest prediction error under 
multiple action categories and outperforms all the previ-
ous state-of-the-art approaches. It is demonstrated that 
the proposed method has excellent generalization ability 
on the small dataset. 

We also provide a visual comparison between ours 
and the previous state of the arts (SOTA) approach, as 
shown in Fig.3. The two most challenging actions per-
formed by subjects S9, and S11 on the Human3.6M test 
set (e.g. Walking dog and Directions) are adopted for 
testing. Severe self-occlusion commonly exists in these 
actions. However, in most cases, our approach obtains 
more accurate predictions than the state-of-the-art 
method[7]. 

To further investigate the impact of different 2D key-
points input sequence lengths on performance, we select  

 
three different input sequence lengths f to conduct ex-
periments on Human3.6M under Protocol #1. All test 
results are listed in Tab.4. It is indicated that a larger 
sequence length can reduce the prediction error more 
effectively. More importantly, our network has a smaller 
amount of parameters compared to previous methods.  

 
Tab.2 Comparison results with other methods on Hu-
man3.6M dataset with 2D ground truth keypoints as input 

 
Methods MPJPE PA-MPJPE 

MARTINEZ et al[5] 45.5 37.1 

HOSSAIN et al[2] 41.6 31.7 

LEE et al[32] 38.4 - 

PAVLLO et al[7] 37.2 27.2 

LIU et al[17] 34.7 - 

ZHENG et al[20] 31.3 - 

Ours 30.7 22.7 
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Tab.3 Comparison results with other methods on HumanEva-I dataset  
 

Walk Jog Box 
Protocol #2 

S1 S2 S3 S1 S2 S3 S1 S2 S3 

PAVLAKOS et al[10]  22.3 19.5 29.7 28.9 21.9 23.8 - - - 

MARTINEZ et al[5] 19.7 17.4 46.8 26.9 18.2 18.6 - - - 

LEE et al[32] 18.6 19.9 30.5 25.7 16.8 17.7 42.8 48.1 53.4 

PAVLLO et al[7] 13.9 10.2 46.6 20.9 13.1 13.8 23.8 33.7 32 

ZHENG et al[20] 14.4 10.2 46.6 22.7 13.4 13.4 - - - 

Ours 13.9 10.1 45.3 21.6 12.7 13.1 23.1 32.3 30.7 

  
Fig.3 Visual comparison between our approach and the baseline method[7] on Human3.6M test set 

 
Tab.4 Impact of different input sequence lengths in 
Human3.6M dataset  

Methods f  Parameters (M) MPJPE (mm) 
27 8.56 48.8 
81 12.75 47.7 PAVLLO et al[7] 

243 16.95 46.8 
27 5.69 48.5 
81 8.46 46.3 LIU et al[17] 

243 11.25 45.1 
27 4.6 48.8 
81 4.9 45.9 

Ours 

243 5.5 43.9 
 

To assess the effectiveness of our proposed SA for 3D 
HPE, we conduct experiments on the Human3.6M data-
sets using two variants of the network, namely the model 
without SA and the model with SA (K-NN), where K is 
the hyperparameter of the structure matrix. The results 
are presented in Tab.5. Obviously, the model with SA 
has a consistent improvement in performance. In addi-
tion, choosing an appropriate value of K to construct a 
structure matrix is important for the network to learn 
geometry priors about the human body. It clearly indi-
cates that our proposed SA can model geometric context 
dependencies among different body joints.   

 
Tab.5 Impact of SA mechanism 

 
Model MPJPE △ 
Without SA  45.6 +1.7 
With SA (1-NN) 44.5 +0.6 
With SA (2-NN) 44.2 +0.3 
With SA (3-NN) 43.9 - 
With SA (4-NN) 44.3 +0.4 

 
In this paper, we have presented a novel video-based 

human body geometric aware network for 3D HPE from 
videos. To improve the spatial feature representation 
ability of the network, we have introduced a novel SA 
mechanism to model geometric context dependencies 
among different body joints. In addition, the proposed 
temporal MLP-Mixer structure is able to comprehen-
sively learn temporal context information from input 
sequences. Furthermore, a novel spatial-temporal net-
work framework has also been proposed to effectively 
integrate spatial-temporal information. Extensive ex-
periments demonstrate that our approach can effectively 
reduce the error of the 3D HPE task and achieve SOTA 
performance on two challenging datasets. 
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