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Cell confluence is an important metric to determine the growth and the best harvest time of adherent cells. At present, 
the evaluation of cell confluence mainly relies on experienced labor, and thus it is not conducive to the automated cell 
culture. In this paper, we proposed an improved U-Net algorithm (called DU-Net) for the segmentation of adherent 
cells. First, the general convolution was replaced by the dilated convolution to expand the receptive fields for feature 
extraction. Then, the convolutional layers were combined with the batch normalization layers to reduce the depend-
ence of the network on initialization. As a result, the segmentation accuracy and F1-score of the proposed DU-Net for 
adherent cells with low confluence (<50%) reached 96.94% and 93.87%, respectively, and for those with high conflu-
ence (≥50%), they reached 98.63% and 98.98%, respectively. Further, the paired t-test results showed that the pro-
posed DU-Net was statistically superior to the traditional U-Net algorithm. 
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Cell culture in vitro for cell expansion is the basis of cell 
research and application. It is particularly important for 
stem cells which have been proposed to be a promising 
candidate for cell-based therapy owing to their ability to 
perpetuate themselves by self-renewal and to generate 
mature cells of a particular tissue through differentia-
tion[1,2]. In the process of cell culture in vitro, the cell 
proliferation will result in the increase of cell confluence, 
which is defined as the ration of the area occupied by the 
cells to the surface area of the culture vessel. However, 
when the cell confluence is too high, the cell prolifera-
tion will slow down or even stop due to the cell contact 
inhibition. Even worse, an excessive cell confluence can 
cause the shortage of nutrients and the accumulation of 
metabolites, which will lead to a decline in cell viability. 
Therefore, cell confluence is an important metric to de-
termine the growth and the best harvest time of adherent 
cells. Currently, the estimation of cell confluence is still 
done manually. This process requires experts to observe 
the cells frequently, and thus it is time-consuming and 
heavily dependent on subjective factors such as the ex-
perts’ ability and experience. In particular, the manual 
estimation is not conducive to the large-scale and stan-
dardized cell culture. Therefore, an objective and accu-
rate estimation of cell confluence based on machine vi-

sion is of great significance for the development of 
automated and standardized cell culture.  

The key to automatically analyzing cell confluence is 
the accurate segmentation of adherent cells, which 
mainly faces the following difficulties. The shapes of the 
adherent cells in the microscopic image are not a regular 
circle, but irregular and diverse. In addition, changes in 
cell confluence will cause significant changes in cell 
morphology (as shown in Fig.1), which is a great chal-
lenge for cell segmentation. In the microscopic images, 
the difference between the adherent cells and the back-
ground is relatively small. So it is very difficult to dis-
tinguish the cells and the background (as shown in Fig.1) 
especially under the condition of high cell confluence, 
which puts forward higher requirements for the accuracy 
and generalizability of the algorithm. 

Several traditional cell segmentation algorithms[3-6] 
such as thresholding, edge detection, region-based, and 
clustering analysis algorithms have been proposed. 
However, most of them are based on traditional image 
processing techniques, which have high requirements for 
the differences between the cells and the background in 
the images, and usually require manual adjustment of 
various parameters to optimize their performance. The 
convolutional neural network (CNN) based methods 
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have been widely used in object detection[7], semantic 
segmentation[8], image classification[9], etc. The semantic 
segmentation networks constantly refresh the record of 
deep learning in image segmentation. At present, the 
representative semantic segmentation networks are fully 
convolutional network (FCN)[10], U-Net[11], SegNet[12], 
pyramid scene parsing network (PSPNet)[13], Dee-
pLabv3+[14], dual attention network (DANet)[15], etc, 
which can be expected to provide a more effective way 
to solve the problems in cell segmentation. 
 

 

Fig.1 Microscopic images of adherent cells: (a) The 
cell confluences are 17%, 45%, 75%, and 96%, re-
spectively; (b) The cell confluences are 25%, 43%, 
70%, and 95%, respectively 
 

In this paper, we propose a novel method suitable for 
segmentation of microscopic images of adherent cells by 
improving the traditional U-Net. This method can accu-
rately segment the adherent cells with irregular shapes 
and automatically analyze the cell confluence under dif-
ferent cell densities, which is of great significance for the 
development of automated cell culture in vitro.  

Cell segmentation is still one of the most challenging 
problems in medical image processing. In recent years, 
with the rapid development of medical image processing 
technology, scholars have proposed a variety of cell 
segmentation methods. Most of these methods are based 
on traditional image processing techniques. For example, 
SOLEIMANI et al[16] proposed a method that consists of 
the normalization of the uneven background, contrast 
adjustment and denoising with block matching 3D 
(BM3D) filter for cell confluence estimation. SHAO et 
al[17] presented an approach using the improved 
Gauss-Laplacian operator, the mean shift algorithm and 
the mathematical region to calculate cell confluence. 
WANG et al[18] proposed an algorithm including edge 
detection, entropy filtering, range filtering and a halo 
recognition technique to estimate cell confluence. In 
summary, most of the above methods used artificially 
formulated rules such as artificial thresholds, which limit 
the generalizability of the algorithms. In addition, these 
methods are multi-stage workflows, and thus their per-
formance relies heavily on the previous steps[19]. 

Currently, semantic segmentation networks are be-
coming more accurate and faster. Some networks begin 
to dominate the tasks of the cell image segmentation. For 
example, BINICI et al[20] improved SegNet to realize 
automated segmentation of cells in phase contrast mi-
croscopy (PCM) images. TSAI et al[21] used mask region 
convolutional neural network (R-CNN) which has a 

backbone of residual neural network (ResNet)-101 to 
segment cells in an instance-aware manner. AYAN-
ZADEH et al[22] designed a network which applies the 
modified ResNet18 in the encoder and the residual 
blocks in the decoder for cell segmentation in PCM im-
ages. The above works show the great potential of deep 
learning in cell segmentation. However, these works only 
focus on the cases under low cell confluence, but those 
under high cell confluence have not been addressed.  

Here, we propose a new strategy that expands the re-
ceptive fields and reduces the dependence on initializa-
tion to improve the network’s adaptability and the ability 
to recognize adherent cells under low and high cell con-
fluence. Considering that U-Net has a prominent advan-
tage in dealing with a small number of samples and bio-
medical image processing[11], we use U-Net as the basic 
network architecture. Further, we introduce the dilated 
convolution[23] and the batch normalization[24] to build an 
improved U-Net network for the segmentation of adher-
ent cells. 

The pictures used in this study were the microscopic 
images of adherent Human Umbilical Cord Mesenchy-
mal Stem Cells (hUC-MSCs). The umbilical cords were 
obtained from healthy mothers with well-developed fe-
tuses. The donors voluntarily donated the umbilical cords 
and signed the informed consent for donation. Isolation 
and culture of hUC-MSCs were carried out in accor-
dance with the relevant standard procedures of Tianjin 
AmCellGene Engineering Company Limited. A brief 
description of the experimental procedure[25] is as fol-
lows. First, the donors must be tested for human immu-
nodeficiency virus (HIV), hepatitis B virus (HBV), hepa-
titis C virus (HCV), treponema pallidum and other 
pathogenic microorganisms before the separation of 
hUC-MSCs from their umbilical cords. Secondly, the 
umbilical cords were repeatedly washed with phosphate 
buffered saline (PBS) and then mechanically cut into 
pieces, and digested with digestive enzymes at 37 °C. 
The digested product was filtered through a 200-mesh 
sterile filter to obtain a cell suspension, which was cen-
trifuged at 1 500 r/min for 10 min. Finally, after remov-
ing the supernatant, the cells were resuspended in DF-12 
cell culture medium containing 10% fetal bovine serum. 
Cells were plated in a T75 culture flask and cultured in a 
humidified incubator at 37 °C and 5% CO2. In this study, 
three different hUC-MSCs samples were cultured in vitro. 
During the cell culture process, a microscope (IX71, 
Olympus Corporation) was used to collect microscopic 
images of adherent cells every 24 h. The microscopic 
images of adherent cells corresponding to the three cell 
samples were classified into different groups (named 
group 1, group 2, and group 3). The labels of the adher-
ent cells data set were manually annotated by the experts. 

The shapes of adherent cells are diverse. Especially, 
most hUC-MSCs are spindle-shaped (as shown in Fig.1). 
Therefore, compared to the case of circular suspension 
cells, the feature extraction of the irregularly shaped ad-
herent cells requires a larger receptive field, which is 
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more conducive to extracting features of large-sized or 
irregularly shaped objects. In this regard, the dilated 
convolution is an ideal choice since it can support expo-
nentially expanding receptive fields without losing reso-
lution or coverage[23]. Compared with the general con-
volution, the dilated convolution can obtain a larger re-
ceptive field without increasing the computation[26], and 
thus it is more suitable for the segmentation of irregu-
larly shaped adherent cells. The general convolution can 
be described as 
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r r

i j i j
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where the function F(Pi, Pj) is the input. The function 
K(m, n) is the filter or the convolution kernel and r is the 
size of it. The output y(Pi, Pj) is the feature map. Based 
on Eq.(1), the dilated convolution operation can be de-
fined as 
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where l is the dilation factor that determines the distribu-
tion of sampling locations in the dilated convolution. In 
our study, the filter size is determined to be 3×3, so the 
distribution of sampling locations corresponding to dif-
ferent values of l can be illustrated in Fig.2.  

Obviously, when l is equal to 1, the 1-dilated convolu-
tion is a general convolution. If l is greater than 1, there 
is an interval between the sampling locations of the di-
lated convolution, and the interval depends on the value 
of l. Therefore, setting the value of l reasonably can ex-
pand the receptive fields without increasing the size of 
the convolution kernel. The size of the receptive fields 
can be expressed as follows[27]  

1

1
1

+( 1) ,
i

i i i i n
n

RF RF K L Stride





               (3) 

where RFi denotes the size of the receptive field of each 
element in the i-th feature map. Ki and Li represent the 
filter size and the dilated factor of the i-th convolution 
layer, respectively. Striden represents the stride of the 
n-th convolution layer. It can be observed from Eq.(3) 
that when the dilated convolutions are used in combina-
tions, the receptive fields can be exponentially expanded. 
 

 

(a) l=1             (b) l=2             (c) l=3 

Fig.2 Illustration of the sampling locations in the di-
lated convolution with different values of l: (a) l=1; (b) 
l=2; (c) l=3 (The points represent the sampling loca-
tions, and the yellow squares represent the receptive 
field of each element after convolution) 
 

The main structure of the improved U-Net algorithm 
(called DU-Net) is shown in Fig.3. The DU-Net is 

mainly composed of 3×3 general convolutions. Based on 
the idea of encoder-decoder, it consists of a contracting 
path on the left (capture context information) and an ex-
panding path on the right (support precise localization). 
And the paths on the left and right are symmetrical to 
each other, which belongs to an end-to-end network. The 
input image first performs a general convolution opera-
tion, and then performs the dilated convolution operation. 
Two layers of 2-dilated convolution are used in combi-
nations after the general convolution at the head of the 
network, which can achieve a receptive filed of 11×11. 
In this way, sufficient bottom features can be obtained 
and provide strong support for the subsequent formation 
of abstract features. In addition, it is necessary to per-
form upsampling after the contracting path ends in order 
to make the size of the input and output the same. At the 
same time, copy and crop operations are performed on 
the feature map, and then the feature map of the con-
tracting path and the feature map of expanding path are 
performed with concatenation operations in the same 
stage. The concatenation operation plays a role of sup-
plementing semantic information to ensure that the fea-
ture map incorporates more low-level features. 

 

 

Fig.3 Network structure diagram of DU-Net (DU-Net 
takes the raw images with size of 512×384 as input 
and generates prediction maps with the same 
resolution) 
 

In addition, batch normalization is used in our network. 
Specifically, the function of batch normalization is to 
regulate the input of each convolutional layer so that the 
mean value is 0 and the variance is 1[24]. Adding the 
batch normalization layer after the convolutional layer 
helps to enable a higher learning rate, eliminate the need 
for Dropout[28] and be insensitive about initialization[24]. 

The segmentation of adherent cells with irregular shapes 
is a new challenge in the field of cell segmentation. In or-
der to explore the segmentation effect of semantic seg-
mentation networks in this case, we employed six repre-
sentative networks, including FCN, PSPNet, DeepLabv3+, 
DANet, UNet++ and U-Net, as well as our proposed 
DU-Net for adherent cell segmentation. All the networks 
were trained on a Nvidia Tesla V100 graphics processing 
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unit (GPU) and trained appropriately to achieve their best 
performance. The values of hyperparameter of the net-
works are shown in Tab.1.  

For the above six networks, DeepLabv3+ is imple-
mented on the deep learning framework Tensorflow. FCN, 
PSPNet, DANet and U-Net are all implemented using 
Keras. Keras is a machine learning library that uses Ten-
sorFlow as the backend. In addition, UNet++ is completed 
on the deep learning framework Pytorch. In order to obtain 
a reliable model evaluation, we employed three sets of 
microscopic images, with the numbers of 33, 34, and 33 
respectively, to perform 3-fold cross validation. Specifi-
cally, during each experiment, we used two subsets to 
train the model and the remaining subset for testing. 
 

Tab.1 Hyperparameters of the networks 
 

Network Parameter Value 
Epochs 150 

Batch size 4 FCN 
Learning rate 0.000 1 
Max iteration 5 000 
Learning rate 0.000 1 DeepLabv3+ 

Batch size 2 
Epochs 120 

Batch size 4 DANet/PSPNet/UNet++ 
Learning rate 0.000 1 

Epochs 20 
Batch size 4 

U-Net 

Learning rate 0.001 
 
In order to evaluate quantitatively the pixel-level seg-

mentation performance of the networks, two parameters  

including Accuracy and F1-score were used as evaluation 
indices. The Accuracy index reflects comprehensively the 
segmentation performance of the network on the fore-
ground and background, and its expression is shown in 
Eq.(4). The F1-score index focuses on evaluating the ac-
curacy of the segmentation of targets by the network, and 
can be calculated by Eq.(5), Eq.(6), and Eq.(7). 
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             (7) 

where TP is the number of pixels correctly identified as 
cells. TN is the number of pixels correctly identified as 
the background. FP is the number of pixels incorrectly 
identified as cells, whereas FN is the number of pixels 
incorrectly identified as the background.  

It should be noted that the cell confluence is an im-
portant factor affecting the segmentation of adherent 
cells. As shown in Fig.1, the increase in cell confluence 
will cause changes in cell morphology and make it more 
difficult to distinguish between the cells and the back-
ground. There is no doubt that it is a new challenge to the 
accuracy and generalization ability of the algorithms. 
Therefore, we evaluated the segmentation performance 
of the above networks under two conditions, i.e., low cell 
confluence (<50%) and high cell confluence (≥50%). 
The evaluation results of the six semantic segmentation 
networks under low and high cell confluence are listed in 
Tab.2, and their segmentation effects are shown in Fig.4.     

Tab.2 Quantitative evaluation results under different cell confluences 
 

 Low cell confluence (<50%) High cell confluence (50%) 

 
Method 

Accuracy F1-score Accuracy F1-score 

FCN-8s 0.935 7±0.021 0.822 3±0.087 0.976 6±0.029 0.976 8±0.035 

PSPNet 0.927 3±0.034 0.826 7±0.074 0.975 0±0.034 0.975 2±0.041 

DeepLabv3+ 0.741 5±0.082 0.663 8±0.093 0.934 4±0.117 0.955 6±0.085 

DANet 0.926 5±0.038 0.830 6±0.064 0.968 2±0.038 0.970 1±0.045 

UNet++ 0.942 2±0.023 0.853 6±0.069 0.979 8±0.026 0.980 1±0.032 

U-Net 0.957 7±0.017 0.918 6±0.045 0.981 9±0.024 0.986 3±0.022 

Group 1 

DU-Net 0.966 3±0.016 0.937 2±0.037 0.986 3±0.018 0.989 8±0.017 

FCN-8s 0.926 5±0.006 0.804 3±0.091 0.969 9±0.025 0.974 7±0.026 

PSPNet 0.912 6±0.014 0.790 3±0.076 0.965 8±0.024 0.971 7±0.025 

DeepLabv3+ 0.776 5±0.051 0.656 5±0.108 0.914 7±0.062 0.946 9±0.050 

DANet 0.913 7±0.009 0.773 1±0.105 0.955 8±0.036 0.962 4±0.043 

UNet++ 0.935 0±0.007 0.851 0±0.050 0.972 4±0.024 0.976 9±0.024 

U-Net 0.926 5±0.006 0.804 3±0.091 0.972 5±0.017 0.983 2±0.015 

Group 2 

DU-Net 0.957 6±0.008 0.918 3±0.041 0.981 1±0.011 0.988 5±0.009 
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FCN-8s 0.940 6±0.018 0.809 1±0.111 0.965 0±0.019 0.969 6±0.020 

PSPNet 0.922 0±0.035 0.793 4±0.095 0.955 5±0.025 0.963 0±0.022 

DeepLabv3+ 0.500 2±0.219 0.553 6±0.136 0.841 1±0.106 0.924 5±0.047 

DANet 0.925 1±0.031 0.801 2±0.076 0.945 6±0.025 0.953 9±0.027 

UNet++ 0.942 6±0.028 0.853 4±0.069 0.973 7±0.015 0.978 0±0.013 

U-Net 0.957 0±0.017 0.913 6±0.033 0.971 3±0.012 0.981 9±0.009 

Group 3 

DU-Net 0.969 4±0.011 0.938 7±0.021 0.977 0±0.011 0.985 5±0.008 

 

  
Fig.4 Intuitive comparison of segmentation effects of FCN, PSPNet, DeepLabv3+, DANet, UNet++, U-Net and 
DU-Net (The black parts represent the background and interference factors, the white parts represent the ad-
herent cells, and the rectangles in the original images mark the locations that are misjudged by the U-Net): (a)—(f) 
Typical cell microscopic images with different brightnesses, contrasts and cell confluences 
 

Obviously, the segmentation accuracies of Deep- 
Labv3+, PSPNet, DANet and FCN are not high enough, 
especially under low cell confluence. In addition, their 
segmentation performance under low and high cell con-
fluence shows large differences, indicating that they have 
insufficient stability and generalization ability for ad-
herent cell segmentation. As for DeepLabv3+, the fea-
tures of cells in small sizes can not be well captured by 
atrous spatial pyramid pooling module with large dilation 
rate[19]. Similar to DeepLabv3+, the pyramid pooling 
module of PSPNet is also not conducive to capturing the 
features of cells in small sizes. The cells are relatively 
scattered under low confluence, thus DANet can not 
capture global context information to establish the spatial 
dependencies through its position attention mechanism 
modules. As for FCN, when FCN completes the fusion 
operation of feature maps, it will directly perform up-
sampling by a factor of 8 to restore the size of the input 
image. These may be the important reasons why the seg-
mentation results of the four networks are not accurate 
enough and are not sensitive to the details of the cells in 
the image.  

Compared to FCN, PSPNet, DANet and DeepLabv3+, 
U-Net and UNet++ have much better performance in the 
segmentation of adherent cells. Between U-Net and 
UNet++, since there is a series of nested and dense skip 
pathways in UNet++, small targets are easily lost by the 
repeated downsampling and upsamling operations. 
Therefore, the overall segmentation effect of UNet++ is 
not as good as that of U-Net. U-Net can acquire abundant 
multi-scale features by concatenating the feature maps in 
the contracting path and the symmetric feature maps in 
the expanding path. Besides, the random elastic defor-
mations of U-Net can realize data augmentation, which is 
conducive to solving the problem of a small number of 
samples. These advantages result in the good perform-
ance of U-Net in the cell segmentation. However, U-Net 
generally uses a 3×3 convolution kernel, making the re-
ceptive filed limited, which is not conducive to the seg-
mentation of adherent cells with irregular shapes. 

Due to the addition of the dilated convolution and the 
batch normalization, DU-Net has a larger receptive field 
and less initialization dependence. As a result, compared 
with those of U-Net, the Accuracy and F1-score of 
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DU-Net increased by 1.24% and 2.51% respectively un-
der low cell confluence, and increased by 0.86% and 
0.53% respectively under high cell confluence. Further, 
in order to examine whether the advantages of DU-Net 
are statistically significant, we used the paired t-test to 
compare statistically the performance of DU-Net and 
U-Net. The results show that the P values corresponding 
to the Accuracy and F1-score are 1.5×10-17 and 1.7×10-11 
respectively, which further proves that DU-Net has a 
higher segmentation accuracy than U-Net. Moreover, the 
standard deviation of DU-Net is lower than that of U-Net, 
indicating that DU-Net has a better stability and a 
stronger generalization ability.  

The intuitive comparison of segmentation effects of 
DU-Net and U-Net is shown in Fig.4. It can be seen that 
DU-Net has excellent performance in different cases. 
First of all, DU-Net can distinguish between the cells and 
interference factors such as dead cells, impurities in bio-
logical reagents, artifacts, and halos produced by optical 
instruments, etc. However, U-Net faces challenges in this 
regard, and is likely to misjudge the interference factor 
as the cells, as shown in the yellow rectangles in Fig.4. 
Secondly, under low cell confluence, the morphology of 
adherent cells is relatively more diverse and irregular, 
which makes it difficult for U-Net to correctly judge 
some cells, but misjudges them as back-ground, as 
shown in the red rectangles in Fig.4. On the contrary, 
DU-Net is more accurate in identifying the adherent cells. 
In addition, under high cell confluence, the background 
has very small areas and is difficult to distinguish from 
the cells, which makes it easy for U-Net to misjudge the 
background as the cells, as shown in the blue rectangles 
in Fig.4. In contrast, DU-Net has much better perform-
ance, and the small background areas can also be accu-
rately segmented. These results further show that the 
dilated convolution combined with batch normalization 
can capture more features of adherent cells with irregular 
shapes, and thus effectively improve the performance of 
U-Net in the cell segmentation. 

The automatic and objective estimation of cell con-
fluence is of great significance to the in vitro culture of 
adherent cells. In this paper, we improved U-Net by in-
troducing the dilated convolution and batch normaliza-
tion for adherent cell segmentation. The results show that 
our proposed DU-Net can get a suitable receptive field to 
capture abundant multi-scale features of adherent cells. 
Whether the cell confluence is high or low, the Accuracy 
and F1-score of DU-Net are significantly higher than 
those of classic semantic segmentation networks, in-
cluding FCN, DeepLabv3+, and U-Net. The results indi-
cate that the proposed DU-Net has an excellent accuracy 
and generalization ability for the segmentation of adher-
ent cells with irregular shapes, and thus can provide a 
new powerful tool for the automatic and objective esti-
mation of cell confluence. 
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