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Visual reconstruction of flexible structure based on fiber 
grating sensor array and extreme learning machine al-
gorithm*  
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A visual reconstruction method was proposed based on fiber Bragg grating (FBG) sensors and an intelligent algorithm, 
aiming to solve the problems of low accuracy and complex reconstruction process in conventional reconstruction 
methods of flexible structures. Firstly, the wavelength data containing structural strain information was captured by 
FBG sensors, together with deformation displacement information. Subsequently, a predicted model was built based 
on an extreme learning machine (ELM) and further optimized by the particle swarm optimization (PSO) algorithm. 
Different deformation patterns were tested on an aluminum alloy plate, indicating the ability of the predicted model to 
produce the deformation displacement for reconstruction. The experimental results show that the maximum error can 
be as low as 0.050 mm, which verifies that the proposed method is feasible and satisfied with the deformation moni-
toring of the spacecraft structure.  
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The flexible structures especially aluminum alloy plates 
have a wide array of applications in the aerospace field. 
Monitoring the deformation state of these typical struc-
tures, due to the complex flight environment and operat-
ing conditions, plays an important role in ensuring the 
safety and working performance of spacecraft. 

Measuring the strain is the basis for realizing the re-
construction of deformed structures. Compared with 
some traditional strain measurement methods, including 
strain gauge electrical measurement method, photo elas-
tic method, laser scanning measurement method[1-3], the 
fiber Bragg grating (FBG) sensor has unique advantages, 
such as strong anti-interference ability, high measure-
ment accuracy, and distributed survey. The sensor has 
great potential for research and health monitoring in the 
spacecraft structures operating in the high-speed and 
complex flight environment[4-6]. Therefore, we will use 
FBG sensors to perform strain measurements of the alu-
minum alloy plate structures. 

There have been studies showing that the center 
wavelength shift of the FBG sensor corresponds well 
with the load subjected to the tested structures under the 
dynamic and static load[7], so to use FBG sensor is quite 

reasonable to obtain load information and enable surface 
reconstruction combining its advantages mentioned 
above. Considerable work has been conducted by several 
researchers in the field of three-dimensional surface re-
construction based on FBG sensors. One of the more 
commonly used methods is the curvature conversion 
method, whose basic principle is to convert the structural 
strain information into curvature information and then 
obtain the coordinate values of curvature points through 
numerical integration, supporting the surface reconstruc-
tion. ZHU et al[8,9] utilized this method to realize the re-
construction of the flexible curved surface and the dy-
namic visual display of a solar panel. WANG et al[10] 
designed an FBG sensor network to measure the spatial 
position of the conversion node based on the segmental 
constant curvature-deflection assumption and realized 
the visual reconstruction of the three-dimensional shape 
of the soft manipulator. ZHENG et al[11] also established 
a geometric model of the unit surface reconstruction of 
the solar panel successfully by the way of recursion 
based on the curvature conversion method. However, it 
inevitably needs a large number of complex arithmetic 
processes, causing to accumulate errors in calculation. 
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The modal method indicates that the structural displace-
ments can be estimated as the multiplication of the 
structural strains and adequate displacement-strain 
transformation (DST) matrix. THOMAS et al[12] applied 
the modal method to the strain-displacement model of 
the cantilever plate structure and achieved the deforma-
tion estimation of the static and dynamic deformation of 
the cantilever plate structure. BANG et al[13] realized the 
shape estimation of a wind turbine tower in a similar way. 
But to build a DST matrix is not easy, for material in-
formation such as load or elastic modulus required is too 
strict to be measured precisely during the experiment, 
which makes it difficult to reconstruct the modal matrix. 
On the other hand, TESSLER et al[14] put forward an 
inverse finite element method, introducing the principle 
of variation for the three-dimensional reconstruction of 
the plate structure by using discrete strain, which is not 
suitable for complex engineering structures. In conclu-
sion, these methods mentioned above still have some of 
their defects that cannot be neglected. 

Compared with these traditional methodologies, the 
neural network algorithm has received much atten-
tion[15,16], for it has the merit of no strict requirements on 
the simulation model and the powerful nonlinear model-
ing capability, so it has a good application prospect in the 
surface reconstruction of flexible structures. To date, one 
of the popular algorithms is the extreme learning ma-
chine (ELM), which is a kind of single hidden layer 
feedforward neural network, using an input weight ma-
trix and a threshold weight matrix which are randomly 
generated to determine the output weight matrix at one 
time, and produces better generalization performance and 
faster training speed than the traditional 
back-propagation (BP) neural network[17-19]. WAN et 
al[20] developed a novel hybrid intelligent algorithm ap-
proach based on ELM for interval forecasting of wind 
power without the prior knowledge of forecasting errors 
successfully. An intelligent fault diagnosis method com-
bined local mean decomposition-singular value decom-
position with ELM was proposed by YE et al[21], which 
had the result of lessening human intervention and 
shortening the fault-diagnosis time. However, the input 
weight matrix and threshold matrix of the ELM are gen-
erated randomly, which will cause a certain size of pre-
diction error. In order to further enhance its accuracy, in 
this paper, the particle swarm optimization (PSO) algo-
rithm is chosen to adjust the parameters that are gener-
ated randomly of ELM to obtain the optimal ELM pre-
dicted model to reduce the prediction error with its 
strong global optimization capability[22-24]. 

This paper proposes a visual reconstruction method of 
the structure shape based on the FBG sensor array and 
the ELM optimized by the PSO algorithm, where the 
ELM is used to establish the complex relationship be-
tween strain and deformation displacement. For the pro-
posed method can realize the direct conversion from 
strain to deformation, the steps are simplified and the 

accuracy of the surface reconstruction is improved com-
pared with the traditional methods. 

When a broadband light source within a fiber im-
pinges on the fiber grating, only the specific light that 
meets the Bragg condition can be reflected, and the rest 
of the light is transmitted[25,26]. The Bragg equation is 
given as 

B eff2 ,n                                 (1) 
where λB is the center wavelength of the FBG reflection 
spectrum, also known as the Bragg wavelength, which is 
governed by the effective refractive index neff and the 
grating period Λ. 

The change of the temperature or stress of the envi-
ronment in which the fiber grating is located results in a 
shift of the Bragg wavelength. When the temperature is 
controlled to remain unchanged during the experiment 
and the sensor is only subjected to strain, the relationship 
between the wavelength shift and the strain could be 
written as 

 B
e

B
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where ΔλB expresses the Bragg wavelength offset, Pe is 
the elastic modulus of the fiber grating, and ε is the axis 
strain value. By measuring the shift of the reflected 
wavelength before and after the change, the change of 
strain can be obtained[27,28]. 

It can be seen from Eq.(2) that the Bragg wavelength 
offset has a linear relationship with the amount of strain. 
In other words, the change in the Bragg wavelength of 
the sensor caused by the deformation of the structure can 
reflect the strain of the structure, as well as the deformed 
displacement of the structure. Therefore, the wavelength 
information and deformation displacement information 
collected could be substituted into the ELM neural net-
work optimized by the PSO algorithm for training to 
obtain a predicted model, and then the unknown dis-
placement data could be predicted by the model accord-
ing to the known wavelength. The ELM predicted model 
obtained before can be used to complete the surface re-
construction. 

An ELM neural network in this paper consists of input 
layer, hidden layer, and output layer, as shown in Fig.1. 

 

 

Fig.1 Structure of ELM
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Supposing that there are N arbitrary samples (Xi, ti), 
(i=1, 2,…,N), where Xi=[xi1, xi2,…,xin]∈Rn denotes the 
input and ti=[ti1, ti2,…,tim]∈Rm denotes the actual output 
of the ELM model, set the number of hidden nodes to L, 
and then the mathematical expression of the ELM model 
can be described as 

   
1

, 1, 2, , ,
L

i i j i j
i

g j N


    W X b o        (3)                      

where βi refers to the output weight of the output layer, 
Wi=[Wi1, Wi2,…, Win]T refers to the input weight of the 
input layer, bi is the threshold of the ith hidden node, and 
oi is the predicted output. g(x) is defined as the activation 
function to increase the nonlinearity of the neural net-
work, which is often used as 

  1 .
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The purpose of this single hidden layer learning net-
work is to approach the predicted output to the actual 
output as closely as possible, namely, 

1
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Combining Eq.(5) with Eq.(3), we expect to realize the 
best possible result that 
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The math operation can be written compactly as Hβ=T, 
where βT×m represents the output weight matrix and the 
expected output matrix can be written as TN×m. The out-
put matrix of the hidden layer H can be expressed as 
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Thus, the training goal of ELM is to find the spe-
cific ˆ

iW , îb and ˆ
i to achieve Eq.(5), such that 
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Under normal circumstances, the number of hidden 
nodes is much smaller than that of input nodes, so H is 
usually singular, and the expected output weight matrix 
can be calculated as  

ˆ , H T                                (9) 
where H+ is the Moore-Penrose generalized inverse ma-
trix of H.  

As has been mentioned, the input weight and threshold 
matrix of ELM are randomly generated, so it still causes 
a certain size of prediction error. To improve the predic-
tion accuracy of the neural network, the PSO algorithm 
is used to optimize the ELM by finding the optimal val-
ues of these two parameters, so that the optimal output 
weight matrix can be obtained through ELM training. 
This combined algorithm is defined as the PSO-ELM 
algorithm, whose specific process is shown in Fig.2. 

 

Fig.2 Flow chart of PSO-ELM algorithm 
 

The PSO-ELM algorithm steps are as follows. 
1. Data pre-processing. The experimental data are di-

vided into training and predicted datasets and normal-
ized.  

2. Set the initial variables of the ELM neural network 
and the relevant initial parameters of the PSO algorithm, 
such as the learning factor c1 and c2, inertia weight w, the 
maximum number of iterations itermax, etc. The ith parti-
cle can be expressed as Xi=[W11, …,WL1,…,W1n,…,WLn, 
b1,…,bL], where Wij (j=1,…,L; i=1,…,n) is the input 
weight between the ith input node and the jth hidden 
node, and bj is the threshold value of the jth hidden node. 

3. Find the initial extremum. Substitute the training 
data into the ELM neural network for training based on 
the initial position of the particles, and calculate the 
ELM output value. In terms of the fitness value, find 
individual and group extreme values, and record their 
values and locations. The fitness function is selected as 

2

1
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                             (10) 

4. Update the inertia weight. The inertia weight should 
decrease linearly with the number of iterations for the 
sake of global search ability in the early stage and local 
search ability in the later stage. Thus, we can make the 
inertia weight of each iteration witer decrease linearly by 
reference to  

 min
iter max max

min
,ww w w iterw                 (11) 

where wmax and wmin are the maximum and the minimum 
inertia weights, respectively, and iter is the number of 
iterations. 

5. Iterative optimization. In each iteration process, 



ZHANG et al.                                                              Optoelectron. Lett. Vol.18 No.7·0393· 

every particle updates its speed and position according to 
the individual extreme value and the group extreme val-
ue, and finally gets the best individual fitness value and 
position. 

6. Calculate the output weight of the ELM model. The 
final optimal position of the individual represents the 
optimal input weight matrix and threshold matrix that we 
need, which can be substituted into the ELM neural net-
work to obtain the optimal output weight β. 

The experiment object to be tested was an aluminum 
alloy plate forming the structure of the spacecraft cabin, 

which was 660 mm in length, 660 mm in width, and 
3 mm in thickness. The frame around the plate was fixed 
and will not be deformed during the experiment. The 
length of the fixed part was 30 mm and 33 mm respec-
tively. The experimental system diagram is given in 
Fig.3(a), as well as the working principle in Fig.3(b). The 
experimental system was composed of a qua-
si-distributed FBG sensor network, a dial indicator array, 
a demodulator, two remote-controlled motors, and a 
computer. The performance parameters of the experi-
mental system are set as listed in Tab.1. 

 

(a) 

 
Fig.3 (a) Experimental system diagram; (b) Experimental system model and work principle 

 
Tab.1 Technical data used for the experimental sys-
tem 

Parameter Value 

Number of sensors 134 

Wavelength coverage 1 532—1 554 nm 

Sensor sensitivity 1.22 pm/με 

Sampling frequency 100 Hz 

Accuracy of displacement measuring 0.001 mm 

 
The FBG sensor and dial indicator measuring points 

were reasonably arranged based on space division multi-
plexing technology, wavelength division multiplexing 
technology, and characteristics of the tested structure. 
The layout of the FBG sensors and dial indicators is 
shown in Fig.4. As we can see, there were 14 channels in 
the sensor network, namely, 8 horizontal channels and 6 
vertical channels. Each horizontal channel contained 10 
sensors, and each longitudinal channel contained 9 sensors, 

 
to realize the collection of strain data of 134 measuring 
points in both horizontal and vertical directions of the 
deformable part of the entire plate. At the same time, 20 
dial indicator measuring points were arranged to measure 
the real deformed displacement of the structure. The in-
dicator measuring points were represented by red dots as 
shown in Fig.4.  

In the system, two motors were installed to provide 
load force to cause structural deformation. One motor 
was placed in the center area of the plate (herein referred 
to Motor a), and the coordinate position in Fig.4 is 
(330 mm, 330 mm). Another one was placed in the upper 
right corner area of the plate (herein referred to Motor b), 
whose coordinate position is (480 mm, 440 mm), as 
shown by red and blue crosses respectively in Fig.4. 
Control the action of motors in different areas to occur 
different types of deformation of the plate structure, 
thereby different kinds of data correspondingly will be 
generated for the experiment.  

The whole experiment works as follows. The alumi-
num alloy plate is deformed induced by the load force of 
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the installed motors, which will cause a shift of the 
Bragg wavelength of the FBG sensors. The wavelength 
information is demodulated by the demodulator and 
transferred to the computer, as well as the displacement 
information measured by the dial indicators to be dis-
played and stored. Afterwards, these two kinds of the 
dataset are processed by the PSO-ELM algorithm to ob-
tain a predicted model, for the reconstruction of the test-
ed structure. 

 

 

Fig.4 Layout diagram of the device 
 

The two motors placed in this experiment can apply 
three kinds of thrusts that increase sequentially in steps 
according to the distance of applied force in steps. The 
stepping amount of the motor is shown in Tab.2. 

 
Tab.2 Step amount of motors 

Motor number Step 1 (mm) Step 2 (mm) Step 3 (mm) 

Motor a 1.383 2.554 3.709 

Motor b 0.530 1.504 2.147 

 
Therefore, these two motors apply different load forc-

es at different positions, so that 12 deformation states of 
the structure can be obtained. In this experiment, a total 
of 120 sets of data were collected for neural network 
training and prediction that meet the requirements. 

The data collected as the motors applied the load force 
of step 2 and step 3 was used as the training dataset, and 
the rest data collected as the motors applied the load force 
of step 1 was used as the predicted dataset. To reduce the 
experimental serendipity, the data sequence was disrupted 
before training. Both in the training dataset and the predic-
tion dataset, the wavelength data gauged by FBG sensors 
was regarded as the input, the corresponding displacement 
data measured by dial indicators was regarded as the out-
put, and they were introduced into the PSO-ELM algo-
rithm for training and predicting to obtain a predicted 
model. The number of hidden nodes has a great impact on 
the training performance of the neural network. The larger 
the number of nodes, the higher the training accuracy, but 

the run-time will increase correspondingly. Therefore, in 
this experiment, as the prerequisite of the total number of 
particle swarms in the PSO algorithm was set to 30, make 
the number of hidden nodes in the ELM network change 
to determine the optimal one by observing the change in 
fitness function values, run-time and training errors. To 
further reduce the serendipity of the experiment, each case 
of the number of hidden nodes will be run 10 times, and 
the average value of each parameter will be taken for sub-
sequent analysis. 

Throughout the ELM theory, when the number of 
training data is equal to the number of hidden nodes, the 
output matrix of the hidden layer will change to be in-
vertible, which means that the predicted value could be 
exactly the same as the actual value, leading to zero error 
in fitting theoretically. Thus, it is not meaningful to in-
crease the number of nodes continuously. However, in 
practice, if the number of training data is large enough to 
make overfitting occur early before the number of hidden 
nodes gets close to the number of training data, it will 
cause the model to lose its fitting ability in an early stage. 
According to Fig.5 and Fig.6, considering the run-time, 
fitness value together with the training errors, the number 
of hidden nodes was tuned to 7, and the particle swarm 
size parameter in the PSO algorithm was tuned to 30.  

In the PSO algorithm, the fitness function is selected 
as Eq.(10). 

 

 

Fig.5 Run-time and fitness value as a function of the 
number of hidden nodes 

 

Fig.6 Mean absolute error and mean square error as a 
function of the number of hidden nodes
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As shown in Fig.7, the fitness value decreases and the 
training accuracy improves with the increase of the 
number of iterations. It means that the optimal input 
weight and threshold matrix are approached as the itera-
tion progresses by the PSO algorithm. 
 

 
Fig.7 Fitness value as a function of the number of 
iterations 
 

Comparing the prediction results of the PSO-ELM 
predicted model with the standard ELM predicted model 
and the traditional curvature conversion method (CCM), 
the errors of these three methods are shown in Tab.3. It 
can be seen that the PSO-ELM predicted model comes to 
a higher time cost, whose run-time has increased from 
0.13 s to 0.73 s. Compared with the standard ELM pre-
dicted model, its reconstruction accuracy is greatly im-
proved, significantly higher than that of the standard 
ELM model and curvature conversion method, with the 
mean absolute error of 0.50 mm and mean square error 
of 0.009. Therefore, the advantages of the algorithm 
proposed for structural deformation displacement field 
reconstruction are further verified. 

 
Tab.3 Reconstruction errors for PSO-ELM, ELM and CCM 

Algorithm Run-time 
(s) 

Mean absolute error 
(mm) 

Mean square 
error 

PSO-ELM 0.73 0.050 0.009 

ELM 0.13 0.267 0.169 

CCM / 0.422 0.271 

 
One main reason for the increasing time is that in the 

PSO-ELM algorithm, the extra time must be paid to find 
the optimal input weight and hidden layer threshold ma-

trix in a loop to obtain the optimal output weight matrix. 
However, in the standard ELM predicted model, once the 
input weight and hidden layer threshold matrix are ran-
domly generated, they no longer change. Therefore, the 
run-time of the PSO-ELM is much longer than that of the 
standard ELM. As a whole, on the premise of meeting 
the detection requirements, it is worthwhile to sacrifice 
the run-time factor to achieve an improvement of nu-
merical accuracy. 

Fig.8 shows the predicted and measured values of a set 
of data for the ELM and PSO-ELM predicted models. It 
can be demonstrated that the predicted values do not fit 
well with the measured values, and even many points 
have large errors in the way of the ELM algorithm. In 
contrast, when training by the PSO-ELM algorithm, the 
predicted values and measured values basically overlap, 
and only a few predicted points deviate from the actual 
points. Thus, it can be concluded that the PSO-ELM al-
gorithm presents significantly better performance than 
the ELM algorithm, and makes great progress in the en-
hancement of the deformed accuracy. 

 

 

Fig.8 Comparison of the real and predicted values for 
PSO-ELM predicted model and ELM predicted model 

  
Using the measured displacement data collected by 

testing and the predicted data by the PSO-ELM predicted 
model to reconstruct the surface with the cubic spline 
interpolation method, the results are shown in Fig.9. The 
error surface is drawn by the difference between the real 
measured data and the predicted data, whose root mean 
square error is less than 0.003 5, which proves that the 
surface fitted by the predicted displacement and the ac-
tual surface are substantially coincident to meet the sur-
face reconstruction requirements. 
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Fig.9 Comparison of the reconstructed surfaces using measured value and predicted value, respectively in dif-
ferent load cases: (a) Motor a with load force of step 1, while Motor b without load force; (b) Motor a with the 
maximum load force, and Motor b with load force of step 2; (c) Both Motor a and Motor b with the maximum load 
force 
 

The motors were used to apply different steps of 
load force to the tested structure, so that it can get dif-
ferent types of deformation. After the feasibility of the 
PSO-ELM model has been verified, the deformation 
process of the aluminum alloy plate could be recon-
structed validly by substituting the data collected under 
different steps used as the predicted dataset sequen-
tially and the rest of the data used as the training data-

set into the PSO-ELM predicted model for training, 
prediction, and then the obtained discrete data was re-
constructed by the same way for surface reconstruction, 
which is shown in Fig.10. It suggests that the combina-
tion of FBG sensor array and ELM optimized by PSO 
algorithm can accurately realize the visual reconstruc-
tion of aluminum alloy plate under different deforma-
tion states.  

 

 

(a)                                                         (b) 

Fig.10 Reconstruction of deformation process of the structure in different load cases: (a) Motor b without load 
force, while Motor a with load force from step 1 to step 3; (b) Motor b with the maximum load force, while Motor a 
with load force from step 1 to step 3 
 

This paper proposes a visual reconstruction method of 
the flexible structure based on the FBG sensor array and 
the ELM optimized by the PSO algorithm, which realizes 
the visual reconstruction of an aluminum alloy plate un-
der different deformation states. Compared with the tra-
ditional surface reconstruction methods, the proposed 
method has lower requirements for the deformed struc-

ture, and the surface reconstruction can be realized 
without considering the structural material information in 
the experiment. Since the input dataset for training is too 
large, resulting in a slower learning speed and longer 
run-time for the PSO-ELM network than the standard 
ELM network, the neural network will be further opti-
mized in subsequent studies by reducing the run-time.  
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