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Depth estimation from single fringe pattern is a fundamental task in the field of fringe projection three-dimensional 
(3D) measurement. Deep learning based on a convolutional neural network (CNN) has attracted more and more atten-
tion in fringe projection profilometry (FPP). However, most of the studies focus on complex network architecture to 
improve the accuracy of depth estimation with deeper and wider network architecture, which takes greater computa-
tional and lower speed. In this letter, we propose a simple method to combine wavelet transform and deep learning 
method for depth estimation from the single fringe pattern. Specially, the fringe pattern is decomposed into 
low-frequency and high-frequency details by the two-dimensional (2D) wavelet transform, which are used in the CNN 
network. Experiment results demonstrate that the wavelet-based deep learning method can reduce the computational 
complexity of the model by 4 times and improve the accuracy of depth estimation. The proposed wavelet-based deep 
learning models (UNet-Wavelet and hNet-Wavelet) are efficient for depth estimation of single fringe pattern, achiev-
ing better performance than the original UNet and hNet models in both qualitative and quantitative evaluation. 
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Depth estimation from the single fringe pattern of fringe 
projection profilometry (FPP) is still a challenging prob-
lem in many practical applications including machine 
vision, three-dimensional (3D) printing, medicine, etc[1-8]. 
In recent years, deep learning based on a convolutional 
neural network (CNN) has attracted more and more at-
tention in FPP. YU et al[9] proposed a new geometric 
constraint-based phase unwrapping (GCPU) method that 
enabled an untrained deep learning-based FPP for the 
first time. SPOORTHI et al[10] formulated the phase un-
wrapping problem as a dense classification problem and 
proposed a fully convolutional network PhaseNet 2.0 
trained to predict the wrap-count at each pixel from the 
wrapped phase maps. SAM et al[11] proposed a CNN 
model to depth estimation from single frame fringe pat-
tern, where simulated fringe projection data are used to 
extract height information from single deformed fringe 
pattern. NGUYEN et al[12] proposed a robust method 
integrating the structured light technique with the CNN 
with experimental data to estimate depth from fringe or 
speckle data. Later, NGUYEN et al[13] proposed a global 
guidance network path with multi-scale feature fusion 
introduced into the CNN model to estimate the depth of a 
single fringe pattern. YUAN et al[14] enhanced the ability 
to capture the global context of a complex object by us-
ing a recurrent residual network. JIA et al[15] proposed a 
novel depth measurement method based on a CNN, 

which was cast as a pixel-wise classification-regression 
task without matching to estimate speckle structured 
light images. WANG et al[16] proposed a dual-path hy-
brid network based on UNet, which fuses the CNN path 
and a swin transformer path to improve the global per-
ception of traditional CNN based networks. 

Most of the studies focus on complex network archi-
tectures to improve the accuracy of depth estimation, 
which takes greater computational and lower speed. As a 
traditional image processing technique, wavelet has been 
explored in deep learning based computer vision tasks, 
such as image super-resolution[17,18], denoising[19], dem-
oiréing[20], etc. XUE et al[18] proposed a wavelet-based 
residual attention network for image super-resolution, 
which reduces the training difficulty by explicitly de-
composing low-frequency and high-frequency details 
into four channels. LIU et al[19] proposed a densely 
self-guided wavelet network for real world image de-
noising, which can efficiently incorporate multi-scale 
information and extract good local features to recover 
clean images. LIU et al[20] proposed a wavelet-based du-
al-branch network for image demoireing, which removes 
Moire patterns in the wavelet domain. As mentioned 
above, wavelet transform is efficient to depict contextual 
and textural information, which inspires us to introduce 
wavelet transform to FPP for deep estimation.  

In this letter, our work focuses on utilizing wavelet 
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transform to enhance the CNN-based model to extract 
low-frequency structure and high-frequency details for 
depth estimation from the single fringe pattern. We built 
a plug-and-play two-dimensional (2D) wavelet transform 
module and 2D inverse wavelet transform module. In the 
modules, 2D wavelet transform can be easily inserted 
into various convolutional models to explicitly decom-
pose the fringe pattern into coarse content and sharp de-
tails and the 2D inverse wavelet transform be easily in-
serted to merge the output features into a depth map, so 
that the training cost of the model can be reduced. The 
proposed method is validated by simulated and real 
fringe patterns dataset. Additional experimental results 
show that the wavelet transform can improve on depth 
estimation of a single fringe pattern in a CNN-based 
model. 

In fringe projection, a fringe pattern captured by a 
CCD can be expressed as 

        0, = , , cos , +2π ,I x y a x y b x y x y f x    (1) 
where a(x, y) is the background, b(x, y) and φ(x, y) are 
the modulation intensity and the optical phase, and f0 is 
the carrier frequency. The depth map D(x, y) of the 
measured object can be obtained from the system cali-
bration with the estimated phase φ(x, y). However, it is a 
great challenge to obtain φ(x, y) from the single fringe 
pattern I(x, y) which requires the necessary steps of 
phase retrieval and phase unwrapping. Compared with 
the traditional models, the model based on deep learning 
can learn a function ℜ to estimate a depth map D as 

    , , .D x y I x y                        (2) 

To validate the wavelet-based deep learning method, 
we choose two classical CNN models (UNet[12] and 
hNet[13]) for depth estimation in the field of FPP. The 
UNet model is mainly made up of two components: en-
coder and decoder. The encoder includes convolution 
layers and pooling layers that detect essential features 
and downsampling the features. The decoder contains 
transpose convolution layers and unpooling layers using 
bilinear interpolation operation that can stack and con-
catenate lower resolution features to form higher resolu-
tion features. In addition, the key is that in the UNet the 
local context information from the encoder is concate-
nated with the upsampled output by skip connection or 
residual connection, which is shown to be beneficial in 
reducing information loss in encoder-decoder architec-
ture. 

The hNet architecture is similar to the UNet architec-
ture. However, it comprises three components: encoder, 
decoder, and the global guidance path. Although the en-
coder and decoder are the autoencoder-based UNet, a 
typical autoencoder-based UNet only reconstructs the 
output feature map with fine-level contextual informa-
tion that is the same as the input fringe pattern. The hNet 
architecture proposes using a global guidance path to 
provide extra global or coarse features to the highest 
fine‐level feature map. 

The architectures of UNet and hNet models are shown 
in Fig.1. To learn the mapping between the input fringe 
pattern and output depth estimation, a back-propagation 
algorithm is adopted to minimize the loss and update the 
model parameters[21]. We compute the difference be-
tween the estimated target map D and the ground truth 
D* to train this CNN network for depth estimation. We 
adopt ℓ2 loss function for supervised learning as 

2*1 ( , ) ( , ) ,
x H y W

loss D x y D x y
H W  

 
          (3) 

where H and W are the height and width of the input 
fringe pattern, respectively. 
 

 
 

 
 
Fig.1 The UNet and hNet network architectures: (a) 
UNet; (b) hNet 

 
In order to utilize wavelet transform to enhance the 

CNN-based models to estimate fringe pattern depth, the 
wavelet transform is introduced in the UNet and hNet 
models. In this letter, we choose the simplest Haar 
wavelet as the basis for the wavelet transform to decom-
pose the fringe pattern into a sequence of wavelet coeffi-
cients of different frequency contents. The transformer 
iteratively applies low-pass and high-pass decomposition 
filters along with downsampling to compute the wavelet 
coefficients, where the low-pass filter (LF) is 
( 1/ 2 , 1/ 2 ) and the high-pass filter (HF) is 
(1/ 2 , 1/ 2 ). In each level of the wavelet transform, 
we use the low-pass filter and the high-pass filter along 
the columns to transform a fringe pattern into two fringe 
patterns, and the same filters are used along the rows of 
these two fringe patterns to generate four fringe patterns 
as shown in Fig.2. Finally, the output is four coefficients, 
denoted as {A, V, H, D}. The equations to derive the 
four coefficients can be found in Ref.[17]. 

Fig.3 shows the overall structure of our proposed 
method. The wavelet transform is embedded into the deep 
learning model to improve the ability to extract high and 
low-frequency features. The input and output of the model 
are fringe pattern and depth map respectively. The 
Conv-bn-LeakyReLU module represents a combination 
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of convolution operation, an effective technique name 
batch normalization to decrease inter-covariate shift in 
networks, and a nonlinear activation function name leaky 
rectified linear unit (LeakyReLU). The Conv-linear 
module which represents a 1×1 convolution with linear 
activation is applied at the final layer to bring the infor-
mation of the vector feature map to the corresponding 3D 
label. The max-pooling layers with a 2×2 window and a 
stride of 2 are applied to downsample the feature maps 
by extracting only the max value in each window. The 
transpose Conv layers are applied to transform the lower 
feature input back to a higher resolution. 

 

 

Fig.2 Illustration of the wavelet transform (The fringe 
pattern is decomposed into four coefficients, A (av-
erage), H (horizontal), V (vertical), and D (diagonal)) 

 

 

Fig.3 The overall structure of the wavelet-based deep 
learning method (Input: fringe pattern; Output: depth 
map) 

 
To demonstrate the effectiveness of the proposed 

wavelet-based models for depth estimation, we choose 
our built simulated dataset and one real fringe pattern 
dataset[13] in the experiments and take the original UNet 
and hNet depth models for comparisons. For the simula-
tion dataset, simulated projection fringe pattern data with 
the image sizes of 640 480 pixels can be obtained ac-
cording to Eq.(1). In the simulation, the parameters in 
Eq.(1) are set as follows: frequency of the fringe pattern 
is f0=1/12, the background illumination is a(x, y)=0.02* 
φ(x, y), and the modulation intensity. The phase is simu-
lated using Zernike functions with different Zernike 
polynomial parameters to generate the different shapes of 
the fringe pattern. For simplicity, the linear phase-height 
model is used, where depth data is h(x, y)=kφ(x, y) and 
k=1 in this study. 

The proposed model is implemented in PyTorch. The 
experiments are conducted on NVIDIA GeForce 
RTX3090 graphics processing unit (GPU) with 24 GB 
memory. We use a cosine annealing warm restarts learn-
ing rate decay policy with an AdamW optimizer. The 
initial learning rate is 0.005, batch size is 4, and epochs 
are 200. The evaluation is carried out by calculating the 
mean absolute error (MAE) and the mean squared error 
(MSE) of the reconstructed 3D shapes. 

The performances of the UNet, wavelet-based UNet, 
hNet, and wavelet-based hNet are evaluated with the 
simulated fringe pattern dataset, the simulated fringe 
pattern dataset with noise, and the real fringe pattern 
dataset as shown in Fig.4. It can be seen from the valida-
tion loss plot on these datasets that the models based on 
wavelet transform have lower errors. 

 

 

Fig.4 Validation loss plots acquired during the learn-
ing process: (a) In the simulated fringe pattern dataset; 
(b) In the simulated fringe pattern dataset with noise; 
(c) In the real fringe pattern dataset 

We use the other data not included in the training or 
the validation datasets as the test dataset to evaluate the 
parameters, computational complexity, and error of these 
models. The cost of the 2D wavelet transform module is 
taken into account when computing giga floating-point 
operations per second (GFLOPS) and computing speed. 
It can be seen from Tab.1 that the computational com-
plexity of the wavelet-based model is reduced by about 
four times with almost no increase in the number of pa-
rameters. The reduction of computational complexity 
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shortens the training period of the wavelet-based model 
by about 4 times, while the increased number of parame-
ters slightly reduces the inference speed. It is well known 
that downsampling an image will lose part information 
of the image. This also works for convolution neural 
networks, especially for dense prediction tasks, the high-
er the resolution, the better the results. Unfortunately, the 
computational complexity of CNNs is proportional to the 
square of the resolution. The model based on wavelet 
transform can reduce the resolution of the fringe pattern 
by 1/2 through decomposition to reduce the computa-
tional complexity, and the high-frequency and 
low-frequency details generated by the decomposition 
can make up for the loss of image information.  

Tab.1 Parameters and computational complexity of 
four models 

Model Params (M) GFLOPs Speed (ms/image) 

UNet 8.64 76.88 50.82 

UNet-Wavelet 8.64 19.29 51.75 

hNet 8.64 77.01 52.49 

hNet-Wavelet 8.65 19.77 58.23 

 
Tab.2 shows the comparison of the base model and 

our method in terms of MAE and MSE. This suggests that 
models based on wavelet transform can predict and re-
construct 3D shapes from the fringe pattern more accu-
rately than UNet and hNet. Since the fringe pattern has 
obvious high and low-frequency information, the wave-
let-based deep learning method takes the four sub-bands 
decomposed by the wavelet transform as input and can 
significantly improve the speed and accuracy of 3D re-
construction. For instance, for the simulated dataset with 
noise, the MSE of the UNet-Wavelet is 4.934 3, while the 
the MSE of the UNet is 9.000 5. 

 
Tab.2 Evaluation metrics of four approaches on three 
datasets (Dataset 1: simulated fringe dataset without 
noise; Dataset 2: simulated fringe dataset with noise; 
Dataset 3: real fringe dataset) 

Datasets Dataset 1 Dataset 2 Dataset 3 

Model MSE MAE MSE MAE MSE MAE 

UNet 2.327 4 9.000 5 9.000 5 0.885 0 2.983 6 0.603 9 

UNet- 
Wavelet 2.261 5 4.934 3 4.934 3 0.822 4 2.792 1 0.549 9 

hNet 2.553 5 9.844 5 9.844 5 0.927 0 2.718 7 0.536 2 

hNet- 
Wavelet 1.568 7 5.643 1 5.643 1 0.767 7 2.533 7 0.534 4 

Fig.5(a), (b), and (c) show the reconstructed depth by 
UNet and wavelet-based UNet approaches on the above 
three datasets respectively. Fig.6 shows the enlarged 
parts of prediction depth results for fringe pattern in red 
box of Fig.5(c). The depth maps estimated by our meth-
od are better than other models in visual quality. Our 
proposed method preserved more accurate details of the 
depth map, especially for complex regions, such as the 

disc part of the simulated fringe pattern dataset and the 
cat-butt part of the real fringe pattern dataset. 

We further validate the performance of the hNet and 
wavelet-based hNet models on the above three datasets. 
Fig.7 shows the reconstructed depth by hNet and wave-
let-based hNet approaches respectively. Fig.8 shows the 
enlarged parts of prediction depth results for fringe pat-
tern in red box of Fig.7(c). Like wavelet-based UNet, the 
wavelet-based hNet also achieves better depth results 
compared with hNet model.  

Further, the plug-and-play 2D wavelet transform 
module is devoted to DPH model. We verify the pro-
posed DPH-Wavelet with the comparison with the DPH. 
The DPH achieves an MSE of 7.546 6 on the above noisy 
dataset, while DPH-Wavelet achieves an MSE of 5.085 4. 
One of the samples is shown in Fig.9. 

 

 

Fig.5 Reconstructed depths by UNet and 
UNet-Wavelet approaches on the three datasets: (a) 
Simulated fringe pattern; (b) Simulated fringe pattern 
with noise; (c) Real fringe pattern 

  The wavelet image processing algorithm can help the 
deep learning model to reduce the computational cost. 
We construct a plug-and-play 2D wavelet transform lay-
er that can be easily inserted into any deep learning 
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Fig.6 Enlarged parts of prediction results for fringe 
pattern in red box of Fig.5(c) 
 

 
 
Fig.7 Reconstructed depths by hNet and hNet-Wavelet 
approaches on the three datasets: (a) Simulated 
fringe pattern; (b) Simulated fringe pattern with noise; 
(c) Real fringe pattern 
 

 
 

 

 
Fig.8 Enlarged parts of prediction results for fringe 
pattern in red box of Fig.7(c) 
 

 

Fig.9 The performance on the simulated fringe pattern 
with noise by DPH and DPH-Wavelet approaches 
 
model, which reduces the hardware computational cost 
by decomposing the image with lower resolution in the 
network model. The experimental results on simulated 
and real datasets demonstrate that the wavelet based 
depth estimation model using the 2D wavelet transform 
layer reduces the training time to about 1/4 times, and the 
accuracy is also improved. The wavelet transform mod-
ules in the proposed UNet-Wavelet, hNet-Wavelet and 
DPH-Wavelet models for fringe projection depth estima-
tion can also be extended to other deep learning models 
in future. 
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