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in absorption spectral lines of mixed gases* 
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When measuring the concentration of multi-component gas mixtures based on supercontinuum laser absorption spec-
troscopy (SCLAS), there are interferences between the absorption spectral lines. For the spectral interference problem 
of CO2 and CH4 at 1 432 nm, a method based on support vector regression (SVR) is proposed in this paper. The SVR 
model, the k-nearest neighbor (KNN) model and the least squares (LS) model are used to analyze and predict the ab-
sorption spectral data, and the prediction accuracies were 96.29%, 88.89% and 85.19%, respectively, with the highest 
prediction accuracy of the SVR model. The results show that the method can accurately measure the concentration of 
gas mixtures, realize the detection of mixed gases using a single waveband, and provide a solution to the overlapping 
spectral line interference of multi-component gas mixtures. 
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The supercontinuum laser absorption spectroscopy 
(SCLAS) is a new type of absorption spectroscopy de-
tection technology with a broad spectrum, easy colli-
mation, high sensitivity, fast response time, and high 
stability, which can achieve simultaneous measurement 
of multiple gases. In recent years, with the development 
of SCLAS technology, it has been gradually applied to 
optical imaging[1], biomedicine[2,3], gas monitoring[4], and 
many other fields. 

When using the SCLAS technique to detect mixed gas 
concentrations, the problem of spectral line interference 
is often encountered. The common solution is to select 
absorption peak spectral lines at different locations for 
the measurement of the gas mixture, so that the problem 
of spectral interference can be avoided. A variety of 
studies have been conducted to measure multiple com-
ponents in gas mixtures. MARTIN et al[5] used a super-
continuous spectral detection system to simultaneously 
detect water vapor at 1 350—1 420 nm and C2H2 at 
1 510—1 540 nm, and the experimental results were in 
good agreement with the simulated spectra obtained 
based on the Hitran database. DONG et al[6] have devel-
oped a dual-gas sensor system for CO and CO2 detection 
using a single broadband light source, pyroelectric de-
tector and time division multiplexing (TDM) technology. 

ADAMU et al[7] developed a supercontinuous spectrum 
laser-based detection system for a wide range of indus-
trial toxic gases from 1 480 nm to 1 700 nm, and the re-
sults showed that the system had good responsiveness 
and selectivity. In addition, the researchers have also 
worked on experimental data processing methods. By 
combining genetic algorithm (GA) and a radial basis 
function neural network (RBFNN), SONG et al[8] pro-
posed an accurate analytical method for the quantitative 
analysis of multi-component mud logging gases. LI et 
al[9] proposed a multi-band fusion model to detect multi-
ple concentrations of CO2 in three wavelength ranges, 
and improved the performance of SCLAS to detect CO2 
concentration. JAVED et al[10] used machine learning to 
decode the composition of the unknown gas mixture 
from the output of the electrochemical sensor array, and 
accurately predicted the concentration of each gas. It can 
be seen that many studies that detect gas mixtures use 
multiple bands. Although this improves the reliability of 
the detection system, it also increases the complexity of 
the detection system. In addition, in some cases, the 
above methods still inevitably encounter the problem of 
spectral line interference. For example, the absorption 
spectra of CO2 and CH4 have serious overlapping inter-
ference, especially when the concentration of CO2 is 



·0744·                                                                        Optoelectron. Lett. Vol.18 No.12 

high, the absorption signal of CH4 will be annihilated 
below the absorption spectrum of CO2, and it is difficult 
to accurately measure the concentration of CH4. 

In order to improve the reliability of the system and 
solve the problem of spectral interference in the process 
of mixed gas measurement, a method based on support 
vector regression (SVR) was proposed in this paper. In 
the field of gas detection, SVR has been extensively 
used. HUANG et al[11] proposed a transformer fault pre-
diction model based on time series and support vector 
machine for accurate prediction of dissolved gas in oil. 
MOHAND et al[12] used a temporal support vector ma-
chine approach to detect and identify CO, O3 and NO2 in 
gas mixtures. In this paper, an SCLAS detection system 
was designed and built to detect the absorption spectra of 
CO2, CH4 standard gases and gas mixtures in the 
1 420—1 450 nm band. For the problem of spectral in-
terference of CH4 and CO2 at 1 432 nm, the SVR model, 
k-nearest neighbor (KNN) model and the least squares 
(LS) model were used in this study to analyze and pre-
dict the spectral data, and the SVR model had the highest 
prediction accuracy. The results showed that the SVR 
model effectively solves the problem, and provides a 
solution to the spectral line interference problem of gas 
mixtures. 

According to the Lambert-Beer law, when mono-
chromatic light of a specific wavelength passes through a 
gas medium during spectral absorption, the intensity of 
the outgoing light is reduced by the absorption of the 
medium. When a monochromatic laser with a central 
frequency passes through a gas to be measured, the ab-
sorbance is proportional to the concentration and absorp-
tion thickness of the gas to be measured[13]. The change 
in light intensity can be expressed as 

t 0 0 0exp( ) exp[ ( ) ( )],vI I I PLCS T g v v        (1) 
where I0 is the initial light intensity, It is the outgoing 
light intensity, αv is the absorption coefficient of the gas, 
P (atm) is the pressure, L (cm) is the light range, C (%) is 
the concentration of the gas to be measured, S(T) 
(cm-2∙atm-1) is the spectral intensity of the gas at a tem-
perature of T, and g(v−v0) is a line function.  

Supercontinuum (SC) lasers are generated when a 
high-powered ultrashort pulse laser is coupled through a 
coupling lens and the non-linear effects occur through a 
non-linear fiber, causing other frequency components to 
appear in the spectrum, thus increasing the spectral width 
of the spectrum[14,15]. 

A linear relationship between gas concentration and 
spectral data is known and a regression model is con-
structed as follows  

T( ) .f  x x b                            (2) 
Introducing the loss function ε, the expression is as 

follows 

                         0,
( ) .

,
i i

i i i i
g




 
             

y x b
y x b y x b


 

     (3) 

After the loss function is substituted, the regression 

model can be expressed by  
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Based on Eqs.(3) and (4), the SVR problem is defined 
as 
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where C is the penalty factor, and a higher C means a 
higher penalty on the outlier data. 

After the slack variables are added, the regression 
model can be expressed by  
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When applying the Lagrange multiplier method for 
Eq.(6), the Lagrange multipliers αi≥0, ά≥0, άj≥0 are in-
troduced to obtain the "pairwise problem" for the objec-
tive optimization function as follows 
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By solving the optimal value of the dual problem, the 
final linear regression model can be obtained as follows 

1
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Considering the nonlinear mapping ϕ(x) and the kernel 
function K(x, xi), the dyadic form of the nonlinear SVR 
is obtained as follows 

1
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where K(x, xi)= ϕ(x)∙ϕ(xi) is the kernel function. 
The commonly used kernel functions include polyno-

mial kernel functions, Gaussian kernel functions, linear 
kernel functions, etc. The experiments in this study prove 
that linear kernel functions are more suitable for SVR 
models of mixed gas data. 

When selecting the spectral lines of gas molecules, the 
line intensities of CO2 and CH4 need to be considered. 
And in the same absorption spectral range, there is spec-
tral line interference phenomenon for two gases. The 
absorption spectra of CO2 were found to be concentrated 
in the range 6 000—7 000 cm-1 with a line intensity of 
10-23. The absorption intensity of CO2 reaches its maxi-
mum at 6 983 cm-1 (wavelength 1 432 nm), and there is 
also strong absorption of CH4 at this point, as shown in 
Fig.1. So finally the 1 420—1 450 nm band is selected 
for the measurement of the measured gas. 

The SCLAS detection system consists of three main 
parts, namely the light source emission part, the gas 
chamber part, the signal reception and processing part[16]. 
The light source part of the system includes the super con-
tinuous spectrum laser, the laser line tunable filter (LLTF), 
and the diaphragm. The gas chamber part contains the gas 
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cylinder, the dynamic dilution calibrator, and the white 
type long range absorption cell. The signal receiving and 
processing part consists of a photodetector, a data acqui-
sition card, and a computer. The schematic diagram of 
the experimental setup is shown in Fig.2. The laser used 
in the experiment is a supercontinuous picosecond pulsed 
laser SC400-4, which has an output range of 
400—2 400 nm. The output wavelength range of the 
LLTF filter is 1 000—2 300 nm with a wavelength tun-
ing resolution of 0.1 nm. The photodetector is a PDA50B 
germanium tube detector, which can detect the spectral 
range of 800—1 800 nm with a response time of 50 ns 
and a gain range of 0—70 dB. The flow measurement 
accuracy of the dynamic dilution calibrator is ±1.0%, 
which can match the concentration of the measured gas 
with high accuracy.   

 

 

Fig.1 Simulated absorption spectra of 3% CO2 and 
CH4 

 
The experiment was carried out at 296 K and 1 atm.  

The absorption cell light path was 26.4 m. High purity 
N2 was used as a dilution gas and background gas. Dur-
ing the experiment, the concentration of the measured 
gas was controlled using a dynamic dilution calibrator, 
and the measured gas passed the absorption cell. The 
laser was generated by an SC laser and filtered by LLTF 
with an output band of 1 420—1 450 nm. After the dia-
phragm filtered out the stray light of the laser, the laser 
passed the absorption cell. The laser was absorbed by the 
gas and reflected to the photodetector. The photodetector 
converted the light signal to an electrical signal, and then 
the electrical signal was transmitted to the data acquisi-
tion card. Data acquisition card transferred data to PC. 
Before starting a new experiment, N2 was blown into the 
absorption cell to ensure that the residual gas is com-
pletely exhausted. CH4, CO2 and a mixture of two gases 
at concentrations of 1%, 2% and 3% were tested in turn. 
Each gas concentration was tested 10 times, and finally 
90 sets of signal intensity It were obtained, as well as 
high purity N2 background signal intensity I0. The 90 
data sets were divided into 9 major groups, as shown in 
Tab.1. 

 

Fig.2 Schematic diagram of the experimental system 
 

Tab.1 Types and concentrations of gases included in 
the data set 

 Standard gas category and concentration 

CH4 CO2 Group 

1% 2% 3% 1% 2% 3% 

1 √      

2  √     

3   √    

4    √   

5     √  

6      √ 

7 √   √   

8  √   √  

9   √   √ 

 
The data of group 3, group 6 and group 9 are summed 

and averaged, and then the absorption signal plots are 
made. As shown in Fig.3, the absorption signal of CO2 
gas and the absorption signal of mixed gas are similar at 
1 432 nm. It is difficult to achieve accurate detection of 
CH4 gas in the large signal background of CO2 gas. 
Therefore, in this paper, SVR model, KNN model and 
LS model are used to solve the spectral line interference 
problem. 

The analysis is carried out on the Matlab R2020a plat-
form and adopts the Libsvm software package. In the SVR 
model, the choice of penalty factor c is very critical, which 
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indicates the importance of outlier data. The larger the 
value of c, the more importance is attached to the outlier 
data, making it more difficult to discard (generalization 
ability). After the optimization of the parameters by Grid 
SearchCV, the value of c is 0.031 25. Linear kernel func-
tion is used to construct the SVR model. 

 

 

Fig.3 Absorption signal diagrams for three groups of 
gases 

 
To obtain better prediction results, the data set is 

processed. A new data set is obtained by adjusting the 
data in Tab.1 to the same baseline and keeping five hun-
dred data near 1 432 nm. The new data set is normalized 
to make the regularity of the data set more obvious. The 
data set is divided into training and prediction sets ac-
cording to the principle of 7: 3. After modeling on the 
Matlab platform, setting model parameters, reading data 
from the training set, and training the model, an SVR 
model is obtained. Prediction uses prediction set data, 
and the prediction result of the model on the training set 
is obtained. The accuracy of the prediction result is 
96.29% and the correlation coefficient between the pre-
dicted and true values is 0.979 1. The results indicate that 
the model has good interference immunity and can accu-
rately predict the mixed gas concentration information. A 
comparison between the actual concentration values of 
the test set samples and the concentration values pre-
dicted by the model is shown in Fig.4. 

 
Fig.4 Prediction results of SVR model 

KNN algorithm is a simple and commonly used ma-
chine learning algorithm. It infers the class to which the 

data belonged based on the neighbors of a certain data, 
and classifies the data by measuring the distance between 
different feature values. It is based on the distance metric 
to calculate the distance between the samples to be clas-
sified and all the samples in the training set, and to find 
the k samples with the smallest distance from the sam-
ples to be classified as the k nearest neighbor samples. 
Finally, the classification category of the sample to be 
classified is determined based on the voting of these k 
nearest neighbor samples, and the predicted sample is 
classified as the category with the largest number of the k 
nearest neighbor samples. 

The choice of k value has a significant impact on the 
classification results of KNN algorithm. If the value of k 
is too small, the phenomenon of overfitting will easily 
occur, resulting in large prediction errors. If the value of 
k is too large, the phenomenon of underfitting will occur. 
In practical applications, the cross-validation method is 
usually used to select a suitable value of k. The KNN 
algorithm uses distance to measure the similarity be-
tween two samples, and the common distance represen-
tation methods are Euclidean distance, Manhattan dis-
tance, etc. After a five-fold cross-validation, the value of 
k taken in this experiment is 3 and the distance represen-
tation method taken is Euclidean distance. The model is 
modeled on the Matlab R2020a platform and the model 
parameters are set. Modeling is based on the training set 
above and the prediction set is predicted using the ob-
tained model. The prediction accuracy is 88.89%. Fig.5 
shows the graph of the prediction results of the model. 

 

 

Fig.5 Prediction results of KNN model 
 
Due to the different values of absorption intensity of 

the gas at different concentrations, the intensity of the 
gas absorption peak signal is proportional to the concen-
tration of the gas to be measured, so the gas concentra-
tion can be inverted based on the signal intensity at dif-
ferent concentration peaks. The LS method is a com-
monly used fitting algorithm, which uses the least square 
sum of absolute errors as the evaluation criterion to find 
the best function match for the data. The basic principle 
is as follows. For a set of data xi, yi (i=1, 2,.... , n), try to 
find a best-fit curve such that the sum of squares of the 
difference between the values of the points on this fit 
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curve and the data values is the smallest among all the 
fitted curves. In this section, the LS method is used to 
perform a linear fit to the concentrations to obtain the 
concentration inversion model. 

Each set of data in Tab.1 is divided into training and 
prediction sets according to the ratio of 7: 3. The training 
sets are summed and averaged to obtain the new training 
set. Background deduction is performed on the new 
training set. The concentrations of the three gases are least 
squares linearly fitted with their absorbance peaks, and the 
fitted curves are shown in Fig.6. From Fig.6, it can be seen 
that the absorbance peak has a good linear relationship 
with the gas concentrations. The fitting function and the 
fitting coefficient (R2) are shown in Tab.2. 

 

 
 

 
 

 

Fig.6 Linear fitting graphs between absorbance peak 
and concentration of (a) CH4, (b) CO2 and (c) the 
mixed gas 

Tab.2 Model performance evaluation 

Model R2 
Y1=0.011 8X+0.000 7 0.991 3 
Y2=0.168 6X−0.006 9 0.992 5 
Y3=0.179 8X−0.005 8 0.992 8 

 
The concentration inversion is performed for the peak 

absorption of the three gases in the prediction set. The 
concentrations of the three gases are predicted according 
to the fitting function in Tab.2, and the final prediction 
accuracy obtained is 85.19%. 

By comparing the prediction results of these three data 
processing methods, it can be seen that the SVR model 
has the highest prediction accuracy. It proves that the 
SVR model has the advantages of automatic extraction 
of absorption spectral line features, high prediction ac-
curacy and strong anti-interference. 

In this paper, an SVR-based method was proposed to 
solve the spectral interference problem of CO2 and CH4 
at 1 432 nm, and realized the simultaneous measurement 
of CO2 and CH4 mixed gas concentration using a sin-
gle-band laser. In addition to the SVR model, the KNN 
model and the LS model were also used to predict the 
gas concentrations. The prediction accuracies of the three 
models were 96.29%, 88.89% and 85.19%, with the 
highest prediction accuracy of the SVR model. This 
study effectively solves the spectral interference problem 
of CO2 and CH4 at 1 432 nm, and provides a reference 
for the measurement of multi-component gas mixtures 
using single-band laser, which can be further applied to 
the measurement of the concentration of other gas mix-
tures. 
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