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Unsupervised model-driven neural network based image 
denoising for transmission line monitoring* 
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With the expansion of smart grid and Internet of things (IoT) technology, edge computing has a wide variety of 
applications in these domains. The criteria for real-time monitoring and accuracy are particularly high in the field of 
online real-time monitoring of electricity lines. Based on edge technology, high-quality real-time monitoring can be 
performed for transmission lines using image processing techniques. Therefore, we propose an image denoising 
method, which can learn clean images using a stream-based generative model. The stream model uses a two-stage 
approach in the network to handle the different training periods of denoising separately. Experimental results show that 
the proposed method has good denoising performance. 
Document code: A Article ID: 1673-1905(2023)04-0248-4 
DOI  https://doi.org/10.1007/s11801-023-2168-0 

 
 

                                                              
   This work has been supported by the Science and Technology Project of State Grid Jiangsu Electric Power Co., Ltd: Research on Early Warning 

Technology of Overhead Transmission Channel External Invasion Risk Based on Layered Calculation (No.J2021064).  
**  E-mail: yannanyn@aliyun.com  

To meet the challenges posed by massive amounts of 
data and computation, edge computing technologies are 
being applied to power systems. Edge computing[1-3] is 
particularly suitable for application scenarios in power 
systems, such as smart terminal devices that monitor grid 
operation in real-time and complete data analysis, then 
process through local edge computing. The data 
generated by devices such as node sensors are processed 
first and then the processed information is fed back to the 
central network. This greatly reduces the amount of data 
and the burden on network bandwidth[4,5]. In the 
transmission line monitoring system, the video image 
analysis capability is integrated into the edge devices 
through a gateway with edge computing capability, and 
only the processing results are fed back to the cloud, 
effectively reducing the load on the cloud[6,7]. The edge 
computing nodes can independently identify the safety 
hazards used in transmission lines and the surrounding 
environment, as well as localize the images for analysis 
and processing. However, real-time surveillance images 
are inevitably affected by noise as well as bad weather. 
In order not to affect the subsequent image processing 
tasks, the transmission line monitoring image denoising 
is a key operation. Edge node devices are basically 
implemented with dedicated graphics processing unit 
(GPU) chips, and the data to be denoised is sent to the 
edge node processor through the network to improve 
processing efficiency. 

The continuous development of deep learning 

techniques gives excellent ideas for the computer vision 
domain field of image processing for power grids[8], 
infrared detection [9], and super-resolution techniques[10] 
to provide excellent ideas for their applications. Deep 
learning methods[11] have been proposed for image 
denoising and significant progress has been made. 
Although deep convolutional neural network (DCNN)[12] 

has achieved great results in image denoising, such 
methods lack flexibility in adapting to different image 
recovery tasks, because the data likelihood term is not 
explicitly exploited[13]. Recently proposed deep learning 
methods, such as Noise2Noise[14] and Noise2Void[15], 
exploit the statistical properties of noisy image patches to 
denoise them. The unsupervised image denoising method 
bridges the technical gap between traditional and 
supervised image denoising methods. A convolutional 
neural network's structure alone is able to be utilized as 
just a prior for natural pictures in the robust 
noise-suppression approach known as deep image prior 
(DIP) [16]. An unsupervised three-dimensional (3D) 
positron emission tomography (PET) image denoising 
method, called magnetic resonance-guided depth decoder 
(MR-GDD)[17], can effectively prevent guided image 
features by integrating anatomical information into the 
DIP structure through an attention mechanism of 
leakage. In this paper, we use a class of stream-based 
generative models[18] for denoising, which can be 
successfully used to generate realistic images by learning 
reversible transformations from complex distributions of 
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images to simple distributions like Gaussian ones. Unlike 
generative adversarial network (GAN)[19], the probability 
function of clear pictures may be clearly and precisely 
captured by stream-based models. Additionally, the 
image edge detection computation drastically reduces the 
amount of data and eliminates information that can be 
considered irrelevant, preserving the important structural 
attributes of the image. Our stream model is inspired by 
these and uses a two-stage approach in the network to 
handle the different training periods of denoising 
separately. In summary, we propose a method for image 
denoising in this context. First, a stream-based generative 
model is used to learn a prior from clean images. Then, 
we use it to train a denoising network without any clean 
target.  

The degradation caused by noise can usually be 
described by the equation of Y=X+N, where X is a clean 
image, N is noise, and Y is the noisy version of X. 
Models with a stream of data study the bijective 
transformation using a high-dimensional method, 
complex random variable X to a latent arbitrary variable 
Z. Typically, the image within the data would be 
symbolized as X, while Z is taken to be a typical random 
vector as 

Z≈N(0, I),                                 (1) 

X=h(Z).                                   (2)                         

The unbiased estimate of the negative log likelihood 
of minimizing X is given below to learn the 
transformation h as 
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where xi is the sample in the data set. In accordance with 
the fundamental principles of random variable 
transformation, logP(X) could be written as 
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If h combines numerous more functions that are 
typical of deep neural networks, this term can be further 
dissected.  
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The flow-based model limits the types of 
transformations to those where the Jacobi matrix is a 
triangular (or even diagonal) matrix in order to make the 
calculation on the right-hand side of Eq.(6) reasonable. A 
straightforward instance is the coupling layer added 
below 

1 1 ,p py x                                (7) 

2 2 ( ),p p pim y x x              
           (8) 

where x and y are the input and output of the layer, 
respectively, features along the channel dimension are 
separated into p1 and p2, and m is an arbitrary 

transformation. It is simple to determine that the Jacobi 
matrix for this layer is   
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where Ip1 and Ip2 are unit matrices which are the same 
size as the partitions p1 and p2. The determinants and 
permanents of the matrix in Eq.(9) are just1 , so it is very 
suitable for stream-based models. Unlike non-linear 
independent components estimation (NICE)[18] and 
density estimation using real nvp[19], we do not need 
invertible transformations because when we learn only 
the prior, no sampling is needed. However, in our work, 
we use the hierarchies and formulas of the flow-based 
models proposed by Glow[20]. 

To understand how to convert a clean image into a 
typical multivariate Gaussian random variable, we firstly 
train a stream-based clean image model. We may 
evaluate Eq.(6) for any given image and determine the 
likelihood that the image is clean thanks to the structure 
of the stream-based model as mentioned in Eq.(2) and 
the processable probability density of a Gaussian random 
variable. It is independent of training and can therefore 
be eliminated. Note that once the first stage of training is 
completed, h is fixed in the second stage. 
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When a clean image X is compared to a noisy image 
Y, the posterior distribution of the clean image X is 
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The denominator can be disregarded in order to 
maximize the numerator or its logarithmic value in order 
to get a maximum a posteriori (MAP) estimate of a clean 
image. logP(Y|X) is just the squared error between X and 
Y when additive Gaussian white noise is assumed. 

argmaxlog ( | ) argmaxlog ( | ) log ( ).P P P 
X X

X Y Y X X  (12) 

Additionally, we are able to determine the prior 
log-likelihood of X using the stream model h developed 
in stage 1. According to Eq.(12), we could obtain the loss 
function for noise reduction d (noting the typical sign 
change, we desire to reduce this loss as much as 
possible) as follows 

2( ) log ( ),f P  Y X X                    (13) 

where the hyperparameter λ regulates how significant the 
prior probability distribution and conditions are in 
relation to one another. Precisely, λ depends on the 
amount of noise in the image. We also learned from the 
studies that the choice of the input has a significant 
impact on the denoiser's performance. We want to train a 
single denoiser for a variety of noise levels, which is a 
difficulty. We changed the first term in Eq.(13) to substitute 
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the squared error between the fuzzy versions of the 
measured X and Y in order to lessen the dependency of 
the incoming on the noise level. Intuitively, we train the 
model to repeat only the low-frequency data from the 
input Y while including additional details to improve the 
output's appearance, whose details to add to Y are 
indicated by the stream model h. The loss function's final 
representation of the denoiser d is as follows  

2( ( ) ( )) log ( ),f B B P  Y X X           (14) 
where B is a local mean filter, and 3×3 is selected as its 
size, since it delivers the best results on the validation set. 

 

 
 

Fig.1 Basic flow of two-stage training 
 

  In this paper, our experimental part uses three 
background datasets with one consisting of the original 
2 000 real visible images containing transmission lines, 
labeled as 2k, to which additional 4 000 pseudo 
background (raindrops, fog) images generated by 
PPGAN and 6 000 simulated noises (Gaussian noise, 
random noise) are added, labeled as 6k and 8k, 
respectively. We fed this model with patches of size 32 
from a clean dataset. Utilizing the losses from Eq.(11), 
we use the Adam optimizer[21] for 100 stages of training. 
We use ResNet[22] as a noise reducer.  

On the dataset, we tested our approach for various 
noise levels as well as for image denoising, and the 
algorithm is an iterative denoising process. The weighted 
noise image is added to the noisy image for the next 
denoising process. It is not difficult to conclude that the 
framework in this paper has significant effectiveness in 
image denoising operation. We compared the denoising 
network (denoted as Den network) with that used for 
image de-rain and de-fog. In this paper, we choose two 
objective metrics, peak signal-to-noise ratio (PSNR) and 
structural similarity (SSIM). PSNR is used to measure the 
difference between two images, and the larger the value, 
the smaller the difference between the two images. SSIM 
extracts structured information from images, which is 
more in line with human eye visual perception than the 
traditional way. The comparison results are shown in 
Tab.2, and we can see that the proposed method performs 
much better than the denoising network. The average 
PSNR gains of the image deblurring and SR denoising 
networks are as high as 0.42 dB and 0.63 dB, 
respectively, which shows the advantages of the 
stream-based generation model. It can be seen from 
Tab.3 that the proposed method outperforms the BM3D 
method. Compared with other methods, our denoising 
method obtains higher PSNR values. 

 

  
Fig.2 Schematic diagram of denoising results 

 
Tab.1 Denoising effect of the method in this paper for different types of noises  

 
Datasets Training datasets Test datasets 

δ Gaussian noise Random noise Gaussian noise Random noise 

 PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM 

15 32.91 0.917 32.86 0.913 32.29 0.903 32.27 0.871 

25 30.54 0.912 30.50 0.906 29.88 0.883 29.86 0.861 

50 27.50 0.905 27.53 0.897 27.02 0.875 27.03 0.772 

Improving the quality of transmission line monitoring 
images facilitates the realization of condition monitoring 
and fault analysis of power equipment. In this paper, a 
stream-based generative model is proposed for deep 
learning methods to learn a prior knowledge from clean 
images. The stream-based model is used as the premise 

of the image denoising method, and an effective solution 
algorithm is designed for the proposed model to improve 
the model denoising ability. The experimental results 
show that after denoising the qualitative and quantitative 
experimental datasets in this study, our technique is more 
competitive. Different prior approaches can be used 
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Tab.2 Average PSNR results for Den networks and 
stream-based generative models on the dataset 
 

Nuclear Nuclear1 Nuclear2 

Den 33.04 28.85 32.16 28.20 
N2N 32.58 28.96 31.88 28.10 
N2V 31.76 27.85 32.31 28.33 
DIP 32.24 29.00 32.57 27.18 

MR-GDD 33.12 28.36 32.36 28.19 
Ours 33.19 29.01 32.64 28.54 

 
Tab.3 Test image PSNR (dB) after image denoising 

 
Images 1 2 3 4 5 
N2N 32.62 35.00 33.29 32.23 33.10 
N2V 32.51 35.10 33.31 32.12 33.04 
DIP 31.92 35.21 32.79 32.09 33.18 
MR- 
GDD 

32.32 35.09 33.17 32.13 33.23 

Ours 32.44 35.40 33.19 32.08 33.33 

 
in denoising networks in the future to enhance the 
denoising ability of the network. 
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