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imaging deviation based on improved slime mould 
algorithm* 
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This research suggests a methodology to optimize Elman neural network based on improved slime mould algorithm 
(ISMA) to anticipate the aero optical imaging deviation. The improved Tent chaotic sequence is added to the SMA to 
initialize the population to accelerate the algorithm's speed of convergence. Additionally, an improved random opposi-
tion-based learning was added to further enhance the algorithm's performance in addressing problems that the SMA 
has such as weak convergence ability in the late iteration and an easy tendency to fall into local optimization in the op-
timization process when solving the optimization problem. Finally, the algorithm model is compared to the Elman 
neural network and the SMA optimization Elman neural network model. The three models are assessed using four 
evaluation indicators, and the findings demonstrate that the ISMA optimization model can anticipate the aero optical 
imaging deviation in an accurate way. 
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One of the key elements influencing the development of 
precision-guided weapons and equipment is aero optical 
imaging deviation. The current value of the aero optical 
imaging deviation may be immediately obtained by the 
airborne computer, which has direct application value for 
raising the hit rate. In order to quickly estimate the aero 
optical imaging deviation in actual engineering, this pa-
per uses the data collected for typical operating condi-
tions and an improved optimization algorithm in order to 
address the issues of high calculation cost, lengthy im-
plementation period, and high cost of wind tunnel ex-
periments and numerical simulations. Height, Mach, and 
angle of attack are a few variables that impact aero opti-
cal imaging deviation. Building a suitable network model 
to forecast output results for various inputs is the core of 
utilizing a neural network to anticipate imaging migra-
tion. The running environment of high-speed aircraft 
may therefore be simulated using the trained network[1-3]. 

Many academics have proposed various methods for 
anticipating aero optical imaging deviation. The least 
squares support vector machine for chaotic particle 
swarms was optimized by XUE et al, using an aero opti-
cal flow imaging deviation algorithm model, and the 
addition of chaotic algorithms increased the variety of 
the initial sequences of particle swarms[4]. WU et al[5] 

proposed an improved particle swarm optimization (PSO) 
algorithm to optimize the extreme learning machine's 
aero optical imaging deviation model, which increased 
prediction accuracy by dynamically transforming the 
inertia weights. YAO[6] proposed an improved aero opti-
cal imaging deviation algorithm model to optimize the 
back propagation (BP) neural network, which increased 
population diversity by introducing the concept of ag-
gregation. CHEN[7] proposed to improve the atomic 
search algorithm to optimize the aero optical imaging 
deviation model of the extreme learning machine, and 
the Levy flight and gold sine algorithm with adaptive 
step length were added to improve the convergence 
speed and exploration accuracy of the algorithm. 
ZHANG et al[8] proposed aero optical imaging deviation 
prediction based on improved sparrow search algorithm 
to optimize BP neural network and added the idea of bird 
swarm algorithm flight behavior, which ensured global 
convergence and population diversity.  

In this study, the neural network model used to forecast 
the aero optical imaging deviation is optimized using an 
improved slime mould algorithm (ISMA). Tent chaotic 
mapping and a random opposition-based learning are 
added to the ISMA, which increases exploration accuracy 
and speeds up convergence. An enhanced approach is then 
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used to refine the weights and thresholds of Elman to 
produce predictions for aero optical image deviation that 
are more precise. 

Elman is a dynamic recurrent neural network built on 
the foundation of the BP neural network. To achieve the 
goal of memory, a successor layer is added to the hidden 
layer. As a result, the network has the capacity to adjust 
to the specifics of the event, improving the network's 
overall stability. The Elman network structure is shown 
in Fig.1, which is divided into four layers, namely, an 
input layer, an output layer, a hidden layer, and a recur-
rent layer. The input, output, and hidden layers share a 
structure with a feedforward network. The input layer is 
a signal transmission function, the recurrent layer is used 
to remember the output value of the hidden layer a mo-
ment before, and the activation function of the hidden 
layer generally selects the Signmoid function. The output 
of the hidden layer enables dynamic modeling by taking 
over the layer's auto-join to the hidden layer's input, 
making it sensitive to historical data. Based on this 
structure, Elman networks have more computational 
power and network stability than BP networks and are 
capable of internal feedback, storing, and using output 
data from earlier times[9,10]. 

 

 

Fig.1 Elman neural network structure diagram 
 

The performance of the network is greatly influenced 
by the number of layers and nodes in the hidden layer. 
Too many layers and nodes will make the network more 
complex, slow down computation, and potentially result 
in overfitting. According to empirical formula Eq.(1) and 
the trial approach, the general setting network implicit 
layer description is determined 

,L m n a                               (1) 
where L is the number of hidden layer nodes, m is the 
number of output layer nodes, n is the number of input 
layer nodes, a is an adjustment parameter, and it takes 
the range from 1 to 10 for training to find the optimal 
value.  

LI et al[11] proposed the SMA, a new meta-heuristic 
algorithm, in 2020. The algorithm primarily models the 
behavior and morphological alterations of slime poly-
phenols during the foraging process, models the positive 
and negative feedback processes produced by the muco-
sal body during foraging, and displays the three correla-
tions between the shape change and contraction mode of 

the mucosal vein tube, resulting in three distinct foraging 
forms. Although the SMA outperforms other conven-
tional algorithms in terms of convergence speed and 
searches precision, it still has the drawback of being un-
able to escape local extremes later in the iteration. 

As the slime approaches the food source, the oscillator 
produces a propagation wave that increases the cyto-
plasmic flow through the veins. The faster the flow of 
cytoplasm, the thicker the veins. This allows when slime 
bacteria come into contact with multiple food sources, 
different networks of veins form between multiple food 
sources, and the venous network is related to the quality 
of food sources. Model the behavior of slime close to 
food as a mathematical equation to simulate how mucous 
bacteria contract.  

The simulated shrinkage mode of the slime bacteria is 
shown as 
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where vb is a parameter with a range of [−a, a], vc from 1 
linearly decreasing to 0, t is the current number of itera-
tions, Xb is the currently found odor concentration of the 
highest individual location, is the location of X slime 
bacteria, and is a random extraction of two XA individu-
als XB from the group, is the weight of W slime bacteria. 

The parameter p is calculated according to the most 
suitable value and the optimal value of the current indi-
vidual, and the definition of p is defined as  

tanh | ( ) |,p S i DF                         (3) 

where 1,2,...,i n , S(i) represents the fitness of X, and 
DF is the best fitness for all iterations.  

The parameter a is shown as  
 , ,bv a a                                 (4) 
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where t is the current number of iterations, and maxt is 
the maximum number of iterations.  

Weight W is shown as 
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where condition represents S(i) in the first half of the 
population and r is a random value within the interval of 
[0,1], bF is the optimal fit obtained during the current 
iteration, and wF is the worst adaptation obtained during 
the current iteration. 

It simulates the positive and negative feedback rela-
tionship between the width of the vibrio vein and the 
food concentration (adaptation value) in Eq.(6). Based on 
the above principle, the formula for the location update 
of the slime is shown as
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where LB and UB represent the lower and upper limits of 
the search range, and rand are r random values within 
the interval of [0,1]. z is a parameter that weighs the 
search and development phases, and is set to 0.03. 

Chaos, as a non-linear phenomenon common in nature, 
is applied by many scholars to optimize search problem 
because of its randomness, traversal and regularity[12]. 
The optimization search algorithm after joining chaos 
can not only maintain the diversity of population, but 
also help the algorithm to jump out of local optimization, 
which improves the global search ability of the algorithm. 
Ref.[13] adds Tent chaos to the sparrow search algorithm, 
Ref.[14] adds Tent chaos to the whale optimization algo-
rithm, and Ref.[15] uses Tent chaos to improve the gray 
wolf optimization algorithm. The improved algorithm 
has fast convergence speed and strong global search ca-
pability. The initialization of the SMA plays an impor-
tant role in the convergence speed and the accuracy of 
the search. When the mucous bacteria are initialized, 
most of the initial positions of the slime bacteria are 
generated immediately. If the initial population is evenly 
distributed in the search space, it is of great help to im-
prove the algorithm.  

Tent mapping has uniform probability density, power 
spectral density and ideal correlation characteristics. The 
mathematical expression is shown as  

 1 1 , 1,2 .i iy y                        (8) 

When α≤1, the system is in a stable state, when α>1, 
the system is in a state of chaos, and when α=2, it,is the 
center Tent map. The mathematical expression is shown 
as   
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where i denotes the number of maps, and yi represents 
the i number of function value. 

Chaos sequences are generated in a variety of ways, 
and the uniformity of the sequence is better with Tent 
mapping. Tent mapping is simple in structure and has 
good traversal uniformity, but there are small periods in 
the Tent mapping iteration sequence. This is because the 
Tent chaos map belongs to the distribution of [0,1], 
whose function distribution is concentrated between 0.2 
and 0.8. The distribution between 0—0.2 and 0.8—1 is 
poor[16]. Ref.[17] proposed an improved Tent chaos 
mapping, introducing random variables on the original 
Tent mapping expression, and improving the traversal of 
the Tent chaos mapping between 0 and 1 more evenly 
distributed than the Tent chaos mapping. Therefore, this 
paper uses the improved Tent mapping generated by the 
chaotic sequence initialization mucosal optimization al-
gorithm population. The improved Tent chaos mapping 
function is shown as 
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where i=0, 1, 2…, NT is the number of particles in the 
chaos sequence, and rand(0,1) is the random number 
between 0 and 1.  

Set the population number to N, assign N initial values 
of yi to y0, and generate chaos variables ybi according to 
Eq.(11), 1,2,...i n . The chaotic variable ybi is inversely 
mapped to the corresponding individual search space xbi 
variable. 

  , 0,1,2... ,i i i i ix l u l y i                    (11) 
where the search range of xi is [li, ui]. 

The opposition-based learning, which generates a re-
verse solution based on the current solution, is an im-
proved strategy that was put forth by TIZHOOSH et al in 
2005 for the field of group intelligence[18]. This strategy 
increases the search ability of the algorithm and lessens 
the likelihood that the algorithm will fall into local opti-
mization. The calculation formula for the opposi-
tion-based learning is displayed as 

,d tx UB LB x                            (12) 
where UB and LB are the upper and lower bounds of the 
search space, respectively, and the current solution is xt. 

The inverse solution produced by the opposition-based 
learning lacks randomness and cannot successfully in-
crease the population diversity in the search space be-
cause it is a specific value from the present solution. In 
order to further increase population diversity and im-
prove populations' capacity to avoid local optimality, 
LONG et al[19,20] proposed an improved random opposi-
tion-based learning, demonstrated as  

 0,1 ,d tx UB LB rand x                    (13) 
where xd represents the random reverse solution, and 
rand[0,1] is a random number in [0,1]. 

The greedy principle is employed to determine 
whether to update the slime mold position because there 
is no assurance that the slime mould fitness value will be 
higher after a mutation. That is, the slime mould position 
is only changed when the mutant slime mould has a 
higher adaptability score. The update location equation is 
displayed as 
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where  1,i N , Xi(t+1) is the optimal slime mould po-
sition after greedy selection, f (Xni(t)) is the current fit-
ness value, and f (Xi(t)) is the old fitness value. 

The Elman neural network is optimized by the ISMA 
in three steps: determining the topology of the network, 
ISMA optimization, and Elman neural network predic-
tion. In order to determine the weights and thresholds 
that need to be optimized in order to improve the slime 
optimization algorithm, Elman structures the network 
according to the number of input and output parameters.
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He then optimizes the network's initial weights and 
thresholds in order to increase its capacity for global op-
timization. After finding the global optimal value to use 
as the initial weights and thresholds of the network, 
ISMA chooses various equations in accordance with the 
changes in weights and iteratively updates them con-
tinuously. The network then generates sample prediction 
values after training. The algorithm flowchart of the 
ISMA optimization of the Elman neural network is 
shown in Fig.2.  

As input variables for the imaging deviation prediction 
model, the altitude, Mach number, angle of attack, line of 
sight roll angle, and line of sight inclination of the air-
craft are employed. The imaging deviation value is used 
as the model's output variable. In the experiment, 600 
randomly chosen data sets were used as the model train-
ing sample set and the remaining data were used as the 
model test sample set to calculate the aircraft imaging 
deviation. The empirical formula states that the hidden 
layer nodes range from 4 to 14 and that experimentation 
determines the neural network layout. According to the 
experimental findings, there are 8 nodes in the Elman 
hidden layer. 

 

 
Fig.2 ISMA-Elman flowchart 

 
Based on this, the ISMA is added to optimize the El-

man network's initial weights and thresholds. This im-
proves the network's capacity to do global optimization 

and prevents it from devolving into local optimization. 
The mean squared error (MSE), coefficient of deter-

mination (R2), mean absolute error (MAE), and mean 
absolute percentage error (MAPE) were chosen as the 
detection criteria in order to assess the benefits and 
drawbacks of aero optical imaging deviation models. The 
MSE is the mean of the sum of squares of the corre-
sponding point errors of the predicted data and the origi-
nal data. The closer the mean square error is to 0, the 
higher the prediction accuracy of the model. The coeffi-
cient of determination (R2) is taken at [0,1], and the 
closer to 1, the higher the degree of fit. The MAE repre-
sents the average of the absolute error between the pre-
dicted value and the true value, and the closer it is to 0, 
the more accurate the result. The MAPE is taken at 
[0,  ), and the closer it is to 0, the higher the accuracy 
of the model. 
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where yi is the predicted value of the ith sample, pi is the 
target value of the ith sample,  1,2,...,i n , and n is the 
number of samples. 

The ISMA-Elman model is contrasted with the predic-
tions from the SMA-Elman model and Elman neural 
network in order to assess the accuracy of the 
ISMA-Elman prediction model put forth in this study. 
The ISMA-Elman model and the SMA-Elman model 
have the same parameter values. 

It is clear from the study and comparison of each 
model in Figs.3—5 and Tab.1 that the ISMA-Elman 
model's anticipated value and actual value differ by the 
least amount. The table shows that the ISMA-Elman 
model has a substantially greater prediction accuracy 
than the Elman model and the SMA-Elman model. The 
MSE, R2, MAE, and MAPE have respective values of 
1.322 7×10-11, 0.999 98, 2.564 3×10-6, and 0.711 3. R2 is 
closer to 1 compared to the other two models, whereas 
MSE, MAE, and MAPE are closer to 0. 

The fitness curves for SMA-Elman and ISMA-Elman 
are shown in Fig.6. The SMA-Elman model tends to 
stabilize after about 40 iterations, while the ISMA-Elman 
model tends to stabilize after around 15 iterations, as 
seen in the figure. The findings indicate that the model 
has faster convergence and a stronger capacity for global 
search than the ISMA-Elman model.
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Fig.3 Elman predicted and real values 
(MSE=1.234 2×10-8, R2=0.973 45, MAE=6.343 7×10-5) 

 

Fig.4 SMA-Elman predicted and real values 
(MSE=1.271 1×10-8, R2=0.989 59, MAE=4.899 4×10-5) 

 

Fig.5 ISMA-Elman predicted and real values 
(MSE=1.322 7×10-11, R2=0.999 98, MAE=2.564 3×10-6) 

 
Tab.1 Comparison of evaluation indicators of each 
model 

Model MSE R2 MAE MAPE 
(%) 

Elman 1.234 2×10-8 0.973 45 6.343 7×10-5 14.035 2 
SMA-
Elman 1.271 1×10-8 0.989 59 4.899 4×10-5 3.801 0 

ISMA- 
Elman 1.322 7×10-11 0.999 98 2.564 3×10-6 0.711 3 

 
In this paper, the ISMA-Elman model is used to pre-

dict the aero optical imaging deviation. The SMA has 
issues with the optimal problem, such as limited conver-
gence ability in the late iteration and ease of falling into 
local optimum throughout the optimization process. The  

 

Fig.6 SMA-Elman and ISMA-Elman fitness curves 

 
SMA is enhanced with the use of the modified Tent cha-
otic sequence to start the population and hasten algo-
rithm convergence. Second, a random opposition-based 
learning is included to increase the population's variety 
and capacity to avoid local optima. ISMA is utilized to 
improve the weights and thresholds of the Elman neural 
network, which increases algorithm accuracy. The 
ISMA-Elman model assures population variety and 
global convergence while outperforming the Elman and 
SMA-Elman models in terms of prediction accuracy. It 
offers a reference for the quick engineering calculation 
of aero optical effects within a certain range and may 
quickly and correctly forecast the aero optical imaging 
deviation. 
 

Statements and Declarations 

The authors declare that there are no conflicts of interest 
related to this article. 
 
References 

[1]   LI G C. Aero optics[M]. Beijing：National Defense 
Industry Press, 2006. (in Chinese)  

[2]   YIN X L. Aero optics principle[M]. Beijing：China 
Aerospace Publishing House, 2003. (in Chinese)  

[3]   XU L, CAI Y L. High altitude aero-optic imaging de-
viation prediction for a hypersonic flying vehicle[C]// 
2011 IEEE International Conference on Imaging Sys-
tems and Techniques, May 17-18, 2011, Batu Ferringhi, 
Malaysia. New York：IEEE, 2011：210-214.  

[4]   WU Y, XUE W, XU L, et al. Optimized least-squares 
support vector machine for predicting aero-optic imag-
ing deviation based on chaotic particle swarm optimiza-
tion[J]. Optik, 2020, 206：163215. 

[5]   WU Y, XUE W, XU L, et al. Optimized ELM for pre-
dicting aero-optic imaging deviation based on improved 
PSO[J]. Journal of optoelectronics·laser, 2020, 31(01)：
64-70. (in Chinese) 

[6]   YAO Y. Analysis and prediction of aero optical imaging 
deviation of typical aircraft[D]. Tianjin：Tianjin Uni-
versity of Technology, 2020. (in Chinese)  



XU et al.                                                                   Optoelectron. Lett. Vol.19 No.5·0295· 

[7]  CHEN X. Aero optical imaging deviation and predic-
tion for different line of sight roll angles[D]. Tianjin：
Tianjin University of Technology, 2021. (in Chinese)  

[8]   XU L, ZHANG Z Y, CHEN X, et al. Improved sparrow 
search algorithm based on BP neural networks for 
aero-optical imaging deviation prediction[J]. Journal of 
optoelectronics·laser, 2021, 32(06)：653-658. (in Chi-
nese)  

[9]   ELMAN J L. Finding structure in time[J]. Cognitive 
science, 1990, 14(2)：179-211. 

[10]   ZHENG Y, ZHANG X, WANG X, et al. Predictive 
study of tuberculosis incidence by time series method 
and Elman neural network in Kashgar, China[J]. BMJ 
open, 2021, 11(1)：e041040. 

[11]   LI S, CHEN H, WANG M, et al. Slime mould algo-
rithm：a new method for stochastic optimization[J]. 
Future generation computer systems, 2020, 111(12)：
300-323. 

[12]   LIU L F, SONG Z D, YU H Y, et al. A modified fuzzy 
C-means (FCM) clustering algorithm and its application 
on carbonate fluid identification[J]. Journal of applied 
geophysics, 2016, 129：28-35. 

[13]   LV X, MU X D, ZHANG J, et al. Chaotic sparrow 
search optimization algorithm[J]. Journal of Beihang 
University, 2021, 47(08)：1712-1720. (in Chinese) 

[14]   LIN J, HE Q, WANG Q, et al. Optimization algorithm 
for sine and cosine whale based on chaos[J]. Intelligent 

computers and applications, 2020, 10(9)：43-48+52. 
[15]   MAO Q H, YANG L, WANG Y L. Fusion improves 

Tent chaos and simulated annealing gray wolf algo-
rithm[J]. Practice and understanding of mathematics, 
2021, 51(5)：147-161. 

[16]   YUE L F, YANG R N, ZHANG Y J, et al. Tent chaos 
and simulated annealing improvement of moth fire-
fighting optimization algorithm[J]. Journal of Harbin 
Institute of Technology, 2019, 51(5)：146-154. (in 
Chinese) 

[17]   ZHANG N, ZHAO Z D, BAO X A, et al. Based on the 
improved tens chaotic gravitational search algorithm[J]. 
Control and decision, 2020, 35(4)：893-900. (in Chi-
nese) 

[18]   TIZHOOSH H R. Opposition-based learning：a new 
scheme for machine intelligence[C]//Proceedings of In-
ternational Conference on Computational Intelligence 
for Modelling, Control and Automation, and Intelligent 
Agent, Web Technologies and Internet Commerce, No-
vember 28-30, 2005, Vienna, Austria. New York：IEEE, 
2005：695-701. 

[19]   LONG W, JIAO J J, LIANG X M, et al. A random op-
position-based learning grey wolf optimizer[J]. IEEE 
access, 2019, 7：113810-113825.  

[20]   NAIK M K, PANDA R, ABRAHAM A. Adaptive op-
position slime mould algorithm[J]. Soft computing, 
2021, 25(22)：14297-14313. 

 


