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Automatic diagnosis of multiple fundus lesions based 
on depth graph neural network* 
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Fundus images are commonly used to capture changes in fundus structures and the severity of fundus lesions, and are 
the basis for detecting and treating ophthalmic diseases as well as other important diseases. This study proposes an 
automatic diagnosis method for multiple fundus lesions based on a deep graph neural network (GNN). 2 083 fundus 
images were collected and annotated to develop and evaluate the performance of the algorithm. First, high-level se-
mantic features of fundus images are extracted using deep convolutional neural networks (CNNs). Then the features 
are input into the GNN to model the correlation between different lesions by mining and learning the correlation be-
tween lesions. Finally, the input and output features of the GNN are fused, and a multi-label classifier is used to com-
plete the automatic diagnosis of fundus lesions. Experimental results show that the method proposed in this study can 
learn the correlations between lesions to improve the diagnostic performance of the algorithm, achieving better per-
formance than the original ResNet and DenseNet models in both qualitative and quantitative evaluation.  
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Fundus diseases such as diabetic retinopathy, age-related 
macular degeneration, and glaucoma have seriously 
threatened the visual acuity and health of human beings. 
Fundus lesions are the main markers for identifying fun-
dus diseases[1]. For example, hemorrhage and exudation 
may appear on fundus images along with fundus diseases. 
Early and accurate identification of fundus lesions is the 
premise of grading fundus diseases and preventing their 
deterioration[2,3]. Clinically, by examining fundus images, 
ophthalmologists analyze the morphology and color of 
hemorrhage and exudative lesions to assess the severity 
of fundus diseases and the progression of related physi-
cal disorders[4,5]. However, limited by the scarcity and 
uneven distribution of ophthalmologists, the 
time-consuming, laborious and subjective manual diag-
nosis, and the inconspicuous early fundus lesions, it is 
easy to be missed diagnosis and misdiagnosis, and then 
leading to vision loss, amblyopia and even permanent 
blindness. With the development of artificial intelligence 
algorithms and the accumulation of medical images, the 
combination of deep learning algorithms and fundus im-
ages provides a new strategy for automatic diagnosis of 
fundus lesions, rapidly implementing large-scale screen-
ing of fundus lesions and assisting ophthalmologists to 

complete high-accuracy early diagnosis. 
In recent years, various fundus lesion detection algo-

rithms based on fundus images have been proposed and 
applied. According to the principles of the algorithms, 
they can be classified into two categories: traditional 
machine learning algorithms and deep learning. 
AGARWAL et al[6] used histogram equalization tech-
nology to construct an adaptive threshold to segment the 
optic disc and optic cup for automatic diagnosis of glau-
coma, with an accuracy rate of 90%. The linear regres-
sion algorithm was applied to the detection of fundus 
exudates to automatically assist in the diagnosis of dia-
betic retina related diseases[7]. Morphological methods 
were employed to characterize exudates in fundus images 
for automatic detection of diabetic retinopathy[8,9]. JAD-
HAV et al[10] proposed an automatic diagnosis method for 
fundus microaneurysms based on support vector machine. 
The above-mentioned traditional machine learning meth-
ods usually suffer from low accuracy rate, high false de-
tection rate and high missed detection rate for fundus le-
sions. Compared with traditional machine learning, deep 
learning has attained remarkable performance in automatic 
diagnosis of keratitis[11], cataract[12,13], glaucoma[14], eye 
tumor[15], and diabetic retinopathy[16], and then extended 



·0308·                                                                          Optoelectron. Lett. Vol.19 No.5 

to fundus lesions detection[17-19], fundus image enhance-
ment[20], and fundus image quality assessment[21,22]. 
WANG et al[23] performed multiple fundus lesions diag-
nosis based on convolutional neural network (CNN) en-
semble learning, with accuracy and area under the curve 
(AUC) of 0.89 and 0.73, respectively. NEHA et al[24] 
employed transfer learning-based CNN to automatically 
diagnose multiple fundus lesions with accuracy, AUC, 
and F1 score of 0.896, 0.688, and 0.856, respectively. 
DING et al[25] proposed a single-group leap-
frog-optimized CNN for multiple fundus lesions detec-
tion, and the accuracy of hemorrhages, microaneurysms, 
hard exudates, and soft exudates were 0.887, 0.872, 
0.950, and 0.937, respectively. PAN et al[26] used deep 
learning to detect fundus lesions of non-perfusion area, 
microaneurysm, exudation, and laser scar with AUC 
values of 0.87, 0.94, 0.96, and 0.96, respectively. LI et 
al[27] proposed a densely connected CNN to analyze the 
correlation between the features of paired fundus images 
for fundus lesions detection. 

Although the above deep learning methods have stud-
ied the automatic diagnosis of multiple fundus lesions, 
they still lack consideration of the correlation between 
lesions. Clinically, varieties lesions co-occur on fundus 
images, and some correlation or regularity may be latent 
between them. In this study, three typical fundus lesions: 
retinal exudation (RE), retinal hemorrhage (RH) and 
glaucomatous optic neuropathy (GON) were taken as 
examples to explore the impact of the correlation be-
tween multiple lesions on the performance of the auto-
matic diagnosis model. Fig.1(a) shows several typical 
images of fundus lesions, from which it is not difficult to 
find that different fundus lesions co-occur on the same 
fundus image. Fig.1(b) summarizes the co-occurrence 
probability of different lesions in the 2 083 fundus im-
ages included in this study. The co-occurrence probabil-
ity of RE and RH is 49.9%, and the co-occurrence prob-
ability of GON and RE (or RH) is 6.7%, indicating the 
degree of correlation between different lesions is differ-
ent. To utilize the correlation information between dif-
ferent lesions, this paper proposed a deep graph neural 
network (GNN) for automatic diagnosis of multiple fun-
dus lesions (DGNNDS). First, the high-level features of 
fundus images were extracted from CNN, then the  

correlation between the high-level features was estab-
lished with the help of the GNN, and finally the 
multi-label classifier was used for multiple fundus diag-
nosis. Compared with the native CNNs (eg, ResNet10[28] 
and DenseNet121[29]), the deep GNN model achieved 
better performance. 

 

Fig.1 Several typical fundus lesion images and the 
correlation between different lesion labels 

As shown in Fig.2, the DGNNDS framework primar-
ily consists of four components: preprocessing, feature 
extraction, multiple lesions correlation learning, and 
multiple lesions classification. First, we performed de-
noising algorithms, data augmentation, and image stan-
dardization to filter noise, enhance the diversity of the 
dataset, and the generalization ability of the model. Two 
representative CNNs (such as ResNet101, DenseNet121) 
with transfer learning were employed to extract 
high-level features. The weights of the model trained on 
the ImageNet dataset were used as the pre-training 
weights of the feature extraction network, and the trans-
fer learning fine-tuned the weights of the feature extrac-
tion network based on fundus images[30]. The GNN is 
suitable for modeling the correlation between different 
dataset. The features of the fundus image were extracted 
using the feature extraction network, and then input into 
a GNN to mine and learn the correlation between differ-
ent lesions. Finally, considering the interaction between 
the deep image features and the label correlation features 
output by GNN, the two features are fused using multi-
plication fusion, and then the label classifier is used to 
complete the automatic diagnosis of multiple lesions. 

 
Fig.2 A framework for automatic diagnosis of multiple lesions in fundus images with fusion GNN
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Except for fundus lesions, the redundant background 
is around the retina. If the entire image was directly input 
into the CNN, irrelevant noise would inevitably be ex-
tracted to affect the performance of the classifier. During 
preprocessing, Hough transformation and Canny detec-
tion were applied to segment the circle of retinal bound-
ary, and the smallest circumscribed rectangle containing 
the retina was cropped to remove the surrounding noise. 
Image standardization technique was conducted prior to 
DGNNDS. The size of fundus images was resampled to 
a resolution of 224×224 pixels, where the value of each 
pixel was normalized to a range of 0—1. To increase the 
diversity of the Ningbo Eye Hospital (NEH) dataset and 
prevent overfitting and bias problems during training, 
data augmentation techniques, including random crop-
ping, random rotations around the image center, and 
horizontal and vertical flips, were adopted to enlarge the 
original training dataset by 6 times. To avoid overfitting 
problem during the training process, not only the data 
augmentation and transfer learning techniques were ap-
plied, but also the batch normalization and early stopping 
strategies were used in this study to stabilize the model. 

To obtain the optimal deep learning for identifying 
multiple fundus lesions, two state-of-the-art multi-label 
classification CNNs architectures (DenseNet121 and 
ResNet101) were investigated for comparison with our 
proposed DGNNDS framework. In this study, different 
CNNs can be selected as feature extraction module. For a 
fair comparison with the multi-label classification archi-
tectures, we also choose the representative DenseNet121 
and ResNet101 CNNs for feature extraction in the 
DGNNDS framework. After combining GNN module, 
two DGNNDS models can be formed: DenseNet_GNN 
and ResNet_GNN. In this study, we quantitatively and 
qualitatively compare the performance of these four 
methods (DenseNet121, ResNet101, DenseNet_GNN, 
and ResNet_GNN) in detail to determine the optimal 
model. 

The GNN is commonly employed to model 
graph-structured dataset, which provides a feasible solu-
tion for graph-structured prediction tasks based on nodes 
and edges. The feature vectors of different lesion catego-
ries extracted by the CNN are correlated using the 
co-occurrence probability matrix of the GNN in 
DGNNDS framework to explore and learn the interaction 
between different lesions. For a clear explanation, a 
graph structure G={V, A} is introduced here, in which 
nodes V and edges A denote the categories and the 
co-occurrence probability between corresponding cate-
gories, respectively[31]. Specifically, suppose that the 
dataset includes C categories, V can be represented as {v0, 
v1,…,vi,…,vc-1} with element vi denoting the category i 
and A can be represented as {a00, a01,…, aij,…, a(c-1)(c-1)}, 
with element aij denoting the probability of the existence 
of object belonging to category j in the presence of ob-
ject belonging to category i. In this study, the GNN 
adopts a gated recurrent update mechanism to propagate 

message and learns contextualized node-level features. 
Specifically, for each category node iv V , it has a 
hidden state t

ih  at timestep t. The initial hidden state 
0
ih  at t=0 is set as the feature vector extracted from the 

CNN, which can be formalized as 0
i ih f . Therefore, 

the GNN can be employed to explore the interactions 
among the semantic specific features and aggregate 
message from its neighbor nodes at timestep t. The ag-
gregated feature vector t

ia is formally expressed as  

   1 1, .t t t
i ij i ji i

j j

a a 
 
 
  
 a h h   (1) 

In this way, message propagation is promoted if node i 
has a high correlation with node j, otherwise, it is sup-
pressed. Therefore, it can propagate message through the 
graph and explore node interactions under the guidance 
of the prior knowledge of statistical label co-occurrence. 
Then, the hidden state t

ih  is updated based on the ag-
gregated feature vector t

ia  and its hidden state at pre-
vious timestep 1

i
th  via a gated mechanism similar to 

the gated recurrent unit[32], formulated as  
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where σ(), tanh() and   are the logistic sigmoid func-
tion, the hyperbolic tangent function, and the ele-
ment-wise multiplication operation, respectively. W and 
U are the learnable weight matrices during the training 
process. t

cz and t
cr denote the controllable forgetting 

message and update message, respectively. c
th  repre-

sents the newly generated message. t
ch is the final up-

dated message, in which   11 t
c c
t  z h and c c

t t z h  rep-
resent selectively forgetting past message and remem-
bering newly generated message, respectively. Therefore, 
each node can aggregate message from other nodes and 
simultaneously transfer the message through the graph, 
enabling interactions among all feature vectors of all 
categories. This process is repeated T times, and the final 
hidden states are updated, i.e., T T T

0 1 1{ , ,..., }ch h h . Here, 
the hidden state of each node T

ih  not only encodes fea-
tures of category i, but also carries contextualized mes-
sage from other categories. Finally, T

ih and the input 
feature vector 0

ih  were concatenated to predict the con-
fidence score of the presence of category i. It can be 
formally expressed as Eq.(3), where fo(·) is an output 
function that maps the concatenation of T

ih and 0
ih into 

an output vector, and the fi(·) is multi-label classification 
function that predicts a score indicating the probability of 
category i. In the same way, all categories were per-
formed to obtain a score vector s={s0, s1,…, sc-1}.  

  T 0
o , .i i i is f f h h                         (3) 

To verify the reasonability of the DGNNDS framework, 
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the gradient-weighted class activation mapping 
(Grad-CAM) visualization technique was adopted to 
generate the heatmaps for highlighting the multiple le-
sion-related regions on which the diagnosis model fo-
cused most. The Grad-CAM is an explainable method for 
CNN-based models, which utilized the gradients of any 
target concept flowing into last convolutional layer to 
produce a localization map highlighting remarkable re-
gions in an image for predicting the concept. 

In this study, all models were trained using Pytorch 
(Torch1.7.1 and Torchvision0.8.2) based on four Nvidia 
Titan RTX graphics processing units (24G). The adap-
tive moment estimation (Adam) optimizer with initial 
learning rate of 0.001, β1 of 0.9, β2 of 0.999, and weight 
decay of 10-4 was adopted. The batch-size was set 128 
for one iteration training and calculated the average 
value of these images to update the trainable parameters. 
Each model was trained for 80 epochs. During the train-
ing process, validation loss was calculated on the valida-
tion dataset in each epoch and used as a reference for 
model selection. If the validation loss decreased in one 
epoch, the model state and corresponding weight pa-
rameters were saved. The model state with the lowest 
validation loss was saved as the final state of the model 
for use on the test dataset.  

To evaluate the performance of the deep learning 
models for the automatic diagnosis of RE, RH and GON, 
we calculated quantitative evaluation indicators with 
95% confidence interval (CI) using the Wilson score 
approach, including the average per-class precision (CP), 
average per-class recall (CR), average F1 score per-class 
(CF1), average overall precision (OP), average overall 
recall (OR), average overall F1 score (OF1), and the 
mean average precision (mAP), as shown in Eq.(4) to 
Eq.(9). The F1 score and the receiver operating charac-
teristic curve (ROC) comprehensive evaluation indica-
tors used to compare the performance of the diagnostic 
systems. The F1 score was calculated using OP and OR 
indicators, and the ROC curve was plotted using the ratio 
of true positive cases (sensitivity) and the ratio of 
false-positive cases (1-specificity). The area under the 
receiver operating characteristic curve was calculated 
using Empirical Bootstrap with 1 000 replicates. A larger 
AUC value indicated better performance. 
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where N is the number of lesion categories, N=3 in this 
study, including RE, RH and GON. TPi, FPi, TNi, and 
FNi denote the numbers of true positives, false positives, 
true negatives, and false negatives for lesion category i, 
respectively. 

In this study, a total of 2 083 fundus images consecu-
tively collected from NEH between May 2018 and Oc-
tober 2021 were leveraged to develop and evaluate the 
DGNNDS. Three ophthalmologist specialists, each with 
over five years of clinical experience, separately anno-
tated all fundus lesions. Annotated labels include RE, 
RH and GON, and each image may contain one or more 
lesion labels. The dataset was randomly divided into 
three independent datasets: 70% in a training dataset 
(1 459 images), 15% in a validation dataset (312 images), 
and the remaining 15% in a test dataset (312 images). 
The detailed information on the distribution of lesions in 
the training set, validation set, and test set is described in 
Tab.1. According to the occurrence times of different 
lesions in the statistical dataset, the co-occurrence prob-
ability between lesions can be constructed to form a 
co-occurrence probability matrix, as shown in Tab.2. The 
co-occurrence probability was used to measure the statis-
tical correlation between different lesions, from which it 
could be concluded that retinal exudation and hemor-
rhage had a strong correlation with a co-occurrence 
probability of 0.499. The co-occurrence probability ma-
trix, as the prior knowledge of the GNN, was employed 
to guide the parameter learning of the multiple lesions 
diagnosis model during the training process.  

Tab.1 Distributions of fundus images 

Class Training Val Test Total 
RE 600 124 126 850 
RH 587 142 130 859 

GON 628 128 136 892 

Tab.2 Co-occurrence probability matrix between dif-
ferent lesions in fundus images 

Class RE RH GON 
RE 0 0.499 0.067 
RH 0.499 0 0.067 

GON 0.067 0.067 0 

In this study, ResNet101 and DenseNet121 were cho-
sen as baseline models to verify the indispensability of 
the GNN module in the automatic diagnosis of multiple 
lesions. After utilizing the GNN module, two feature 
processing strategies were proposed and compared, as 
shown in Tab.3. The first strategy only utilized the out-
put feature of GNN for the multi-label classifier. The 
second strategy combined the output features of CNN 
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and GNN for the multi-label classifier, in which the out-
put feature of CNN is also the input feature of GNN. 
According to the different fusion methods of CNN and 
GNN features, the second strategy can be divided into 
three categories: additive fusion, concatenation fusion, 
and multiplication fusion[33]. Detailed ablation experi-
ments were conducted in this study to compare the per-
formance of two feature processing strategies and base-
line CNNs to obtain the optimal model. Tab.3 showed 
the test results of different models with the 95% CI. 
From ablation experiments, two meaningful conclusions 
were obtained. First, the performance of two feature 
processing strategies using the GNN module was supe-
rior to those of the two baseline models. Second, the 
multiplication fusion of the second strategy using output 
features of CNN and GNN outperformed the first strat-
egy using the only feature of GNN. Consistent conclu-

sions were obtained on ResNet101 and Dense-Net121. 
Specifically, compared with the ResNet101, the CP, CR, 
CF1, OP, OR, and OF1 of ResNet_GNN with multipli-
cation fusion were improved by −0.78%, 8.48%, 3.78%, 
−0.78%, 8.48%, and 3.78%, respectively. Compared 
with the DenseNet121, the CP, CR, CF1, OP, OR, and 
OF1 of DenseNet_GNN with multiplication fusion were 
improved by 0.89%, 3.90%, 2.41%, 1.00%, 4.01%, and 
2.65%, respectively. The above ablation experiments and 
comparative analysis verified that the second strategy 
with the output features of CNN and GNN achieved the 
optimal performance in multi-lesion diagnosis. This is 
probably due to the fact that the correlation of different 
lesions was learned by the GNN module. This learned 
correlation is an effective complement to the feature of 
CNN, which is beneficial to improve the performance of 
automatic diagnosis models. 

Tab.3 Performance comparison of two features processing strategies and baseline models on the diagnosis of 
multiple lesions 

Only output feature of GNN 
Multiplication fusion of output fea-

tures of CNN and GNN Metric DenseNet121 ResNet101 
DenseNet_GNN ResNet_GNN DenseNet_GNN ResNet_GNN 

CP (95% CI) 
0.895 

(0.861—0.929) 
0.898 

(0.864—0.931) 
0.873 

(0.836—0.910) 
0.896 

(0.863—0.930) 
0.903 

(0.870—0.936) 
0.891 

(0.857—0.926) 

CR (95% CI) 
0.847 

(0.807—0.887) 
0.849 

(0.810—0.889) 
0.880 

(0.844—0.916) 
0.868 

(0.831—0.906) 
0.880 

(0.844—0.916) 
0.921 

(0.891—0.951) 

CF1 (95% CI) 
0.870 

(0.833—0.908) 
0.873 

(0.836—0.910) 
0.877 

(0.840—0.913) 
0.882 

(0.847—0.918) 
0.891 

(0.857—0.926) 
0.906 

(0.873—0.938) 

OP (95% CI) 
0.894 

(0.833—0.928) 
0.897 

(0.836—0.931) 
0.873 

(0.837—0.910) 
0.897 

(0.864—0.931) 
0.903 

(0.870—0.936) 
0.890 

(0.873—0.925) 

OR (95% CI) 
0.846 

(0.806—0.886) 
0.849 

(0.809—0.889) 
0.880 

(0.844—0.916) 
0.870 

(0.833—0.907) 
0.880 

(0.844—0.916) 
0.920 

(0.890—0.950) 

OF1 (95% CI) 
0.869 

(0.832—0.907) 
0.872 

(0.835—0.909) 
0.877 

(0.840—0.913) 
0.883 

(0.848—0.919) 
0.892 

(0.857—0.926) 
0.905 

(0.872—0.938) 
 
Furthermore, to confirm the optimal features fusion 

method in the second strategy for the diagnosis of 
multiple lesions, three feature fusion methods, including 
additive fusion, concatenation fusion, and multi-plication 
fusion, were investigated and compared. Taking the 
ResNet_GNN model as an example, Fig.3 showed the 
performance difference of different feature fusion 
methods. It is not difficult to obtain the following two 
conclusions: the performance of additive fusion and 
concatenation fusion was comparable, and the 
multiplication fusion method was superior to the other 
two methods. This indicated that the multiplication 
fusion method was more suitable for the fusion of 
features of CNN and GNN. 

Tab.4 summarizes the average precision (AP) of 
different models on the three lesion labels. Comparative 
analysis of the two different structures of the CNN after 
the fusion of the GNN has improved the average 
accuracy of various labels. The AP of DenseNet121 and 
DenseNet_GNN in RE, RH, and GON lesions increased 
by 1.66%, 0.84%, and 1.47%, respectively. The AP of  

 
ResNet101 and ResNet_GNN in RE, RH, and GON 
lesions increased by 2.72%, 2.76%, and 0.42%, 
respectively. The correlation between RE and RH 
obtained from the prior knowledge of co-occurrence 
probability is relatively high, and the accuracy of the two 
labels of RE and RH has been greatly improved in this 
experiment. This further indicates that the GNN has 
learned the strong correlation property between these two 
types of lesions during the training process. 

In order to more clearly compare the detection per-
formance of different models for the three lesions, the 
AP of the three lesions in each batch size of the four 
models in the test dataset were counted, and the data 
were visualized using boxplots, as shown in Fig.4. The 
detection performance of DenseNet121 for GON is the 
worst, ResNet101 is slightly better than DenseNet121, 
and ResNet_GNN and DenseNet_GNN have better per-
formance. DenseNet121 performs the worst for RE de-
tection and ResNet_GNN performs the best. ResNet101 
performed the worst for RH detection, and ResNet_GNN 
performed the best.
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Fig.3 Performance comparison of different fusion 
methods on the ResNet_GNN model 

Tab.4 Comparison of AP values of different deep 
learning models on multiple lesions in the fundus 

Model RE AP RH AP GON AP mAP 

DenseNet121 0.899 0.955 0.955 0.937 

ResNet101 0.920 0.943 0.959 0.941 

DenseNet_GNN 0.914 0.963 0.969 0.949 
ResNet_GNN 0.945 0.969 0.963 0.959 

 

 

Fig.4 AP boxplot of different deep learning models on 
a batch size of the test dataset 

 
To investigate the impact of the depth of the GNN on 

model performance, we calculated the variation trend of 
ResNet_GNN performance as the number of layers of 
the GNN increased, as shown in Fig.5. It can be seen that 
with the continuous increase of the number of layers of 
the GNN, the performance of the model first increases 
and then decreases, and when the number of GNN layers 
reaches 3, the model obtains the best performance. When 
the number of network layers is greater than or equal to 3, 
the performance of the model shows a declining trend. 
The reason may be that when the number of GNN layers 
is deep, a large number of parameters lead to the disap-
pearance of the backpropagation gradient and overfitting, 
and the AP does not increase but decreases.  

Furthermore, the ROC curves and AUC values of dif-
ferent models on the three lesions were compared to 

comprehensively analyze the detection ability of the 
models for different fundus lesions, and the comparison 
chart shown in Fig.6 was obtained. Fig.6(a) shows the 
ROC curve and AUC values of DenseNet121 and 
DenseNet_GNN on multiple fundus lesions. The AUC 
values of the DenseNet_GNN model in RE, RH, and 
GON are 0.956, 0.978, and 0.971, respectively. Com-
pared with DenseNet121, the AUC values of Dense-
Net_GNN in the three lesions were increased by 2.4%, 
0.3%, and 1.7%, respectively. Fig.6(b) shows the ROC 
curve and AUC values of ResNet101 and ResNet_GNN 
on multiple fundus lesions. The AUC values of the Res-
Net_GNN model in RE, RH, and GON are 0.963, 0.986, 
and 0.975, respectively. Compared with ResNet101, the 
AUC values of ResNet_GNN in the three lesions in-
creased by 1.8%, 2.0%, and 2.1%, respectively. The 
ROC curve can intuitively be used to compare the detec-
tion performance of different models for different lesions. 
The closer the ROC curve is to the upper left corner, the 
higher the accuracy of the model is. Therefore, it can be 
seen from the figure that the ROC curve of the fusion 
GNN model is better than the original model's ROC 
curve. 

 

 

Fig.5 Performance trend of the ResNet_GNN with the 
number of layers of the GNN 

 
To visualize the areas contributing most to the 

DGNNDS, we generated a heatmap that superimposed a 
visualization layer at the end of the CNN. For images of 
RE and RH lesions, the heatmap can accurately locate 
the corresponding lesion area. For images of GON, the 
heatmap can effectively highlight the optic disc area. 
Typical examples of the heatmaps for RE, RH, and GON 
images are presented in Fig.7. Fig.7(a) shows typical 
images of fundus lesions, and Fig.7(b)—(d) are the three 
lesions classified as RE, RH, and GON generated by 
guided backpropagation in Fig.7(a) as a visualized heat-
map. In the images of RE and RH, the highlighted area 
can be accurately located at the area where the lesion 
occurs, and in the images of GON, the highlighted area is 
located around the optic disc of the fundus. This inter-
pretability feature of the DGNNDS may promote its ap-
plication in real-world settings because photographers 
can understand how a final classification is made by the 
DGNNDS.
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Fig.6 ROC and AUC of different deep learning models on fundus multiple lesions 

 
(a) Original image                  (b) RE                      (c) RH                     (d) GON 

Fig.7 Visual heatmaps of ResNet_GNN model on three lesions: (a) Typical fundus lesion images; (b) (c) (d) Gen-
erated visualization heatmaps for RE, RH, and GON, respectively

In the diagnosis of multiple lesions in fundus images, 
making full use of the relationship between fundus le-
sions is an important way to improve detection perform-
ance. In this paper, we propose a fusion GNN approach 
for multiple lesions diagnosis of fundus images, which 
extracts lesion features in fundus images by the CNN, 
then inputs the extracted features to the GNN to learn the 
correlation between different lesions. Finally, the input 
and output features of the GNN are fused and performed 
the diagnosis using a multi-label classifier. The experi-
mental results show that the models of fused GNN, Res-
Net_GNN and DenseNet_GNN, achieve better results in 
terms of evaluation metrics compared to other models. In 
the next step, we will investigate in depth the dependen-
cies of category semantic features and category-related 
image features, as well as the imbalanced data problem 
of different categories. 
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