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Low-rank tensor completion with spatial-spectral con-
sistency for hyperspectral image restoration 
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Hyperspectral image (HSI) restoration has been widely used to improve the quality of HSI. HSIs are often impacted by 
various degradations, such as noise and deadlines, which have a bad visual effect and influence the subsequent applica-
tions. For HSIs with missing data, most tensor regularized methods cannot complete missing data and restore it. We 
propose a spatial-spectral consistency regularized low-rank tensor completion (SSC-LRTC) model for removing noise 
and recovering HSI data, in which an SSC regularization is proposed considering the images of different bands are dif-
ferent from each other. Then, the proposed method is solved by a convergent multi-block alternating direction method 
of multipliers (ADMM) algorithm, and convergence of the solution is proved. The superiority of the proposed model 
on HSI restoration is demonstrated by experiments on removing various noises and deadlines. 
Document code: A Article ID: 1673-1905(2023)07-0432-5 
DOI  https://doi.org/10.1007/s11801-023-2182-2 
 

 

                                          
*E-mail: zhuhu@njupt.edu.cn 

Hyperspectral images (HSIs) can provide hundreds of 
contiguous spectral bands containing a wealth of spatial 
and spectral information [1]. As a result, HSI is used in 
many fields, including biomedicine, urban planning and 
many others. During acquisition, however, HSI is inevi-
tably contaminated by mixing noise due to the unique 
physical design and limitations of the imaging mecha-
nism[2,3]. This severely degrades image quality and limits 
the accuracy of subsequent processing tasks. Therefore, 
recovery as a pre-processing step for HSI applications is 
very important and challenging [4]. 

In the early years, many restoration methods are pro-
posed by using the vectorization or matrixing of HSIs 
data, such as the K-singular value decomposition 
(K-SVD) method, nonlocal algorithm, and locally linear 
embedding (LLE) method. However, this kind of method 
does not consider the correlations between spatial re-
gions or band and band, so the restoration performances 
are affected. HSI is imaged by a spectral sensor using 
different wavelengths of light on the same object, so the 
HSI data is highly correlated, i.e., the HSI data is of low 
rank. In order to be able to exploit the spectral features of 
HSI, a number of methods based on matrix low-rank 
(LR) priors have emerged[5-7]. Their main idea is to col-
umnarize each band of the HSI into a vector, the HSI is 
then expanded into a low-rank matrix, and the low-rank 
prior of the HSI is then approximated by minimizing the 
rank of the matrix [3]. 

Inevitably, the matrixing operation described above 
destroys the intrinsic structure of the HSI. In most 

LR-based methods, the HSI data is always divided into 
patches and then rearranged into two-dimensional (2D) 
matrices resulting in the loss of inter-three-dimensional 
(3D) structural information. Tensor-based methods are 
proposed for restoring the HSI by modeling the HSI data 
as a 3D tensor. Tensor rank is most typically defined as 
completely positive (CP) rank [8] and Tucker rank, CP 
rank being defined as the minimum number of ranks 
required to represent a third-order tensor. However, cal-
culating the CP for a given tensor is a difficult problem. 
The Tucker [9] rank is a vector in which the kth element is 
the rank of the mod k expansion matrix. However the 
unfolding operation in the Tucker decomposition also 
destroys the intrinsic structure of the tensor [10].   

The spectral low-rank prior is the most widely used 
prior in hyperspectral recovery tasks. In contrast, there is 
still much room for improvement in the definition of 
tensor rank in existing studies. For example, the spectral 
and spatial dimensions have their own inherent low-rank 
structure, which may not be fully explored by existing 
models. On the other hand, there is some scope for opti-
misation of the form of the inscription of the tensor rank. 
Therefore, we propose a spatial-spectral consistency 
regularized low-rank tensor completion (SSC-LRTC) 
method, which not only can remove noise, but also can 
complete the HSI data. A convergent multi-block alter-
nating direction method of multipliers (ADMM) algo-
rithm is derived for the proposed SSC-LRTC model, and 
the existence of the solution and its convergence are 
demonstrated. In order to retain the advantages of the 
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direct generalization of the alternating direction multi-
plier method in numerical experiments, while ensuring 
the convergence of the iterative sequence generated by 
the algorithm, the ADMM is modified so that the itera-
tive sequence generated by the algorithm converges. 
During each iteration, the variables are grouped so that 
the iterations are updated serially within the group and 
solved in parallel between the groups. This has the ad-
vantage of using the most recent iteration information 
possible, while minimising the time required for compu-
tation. 

Given HSI data M N B H , we use M and N to de-
note the height and width of the image of each band, and 
use B to denote the number of spectral bands. Generally, 
the observed HSI data suffer from degradation, such as 
noise, or deadlines. Supposing the observed value of H is 

M N B H described as 
, H H N                                  (1) 

where M N B N includes various degradations. 
HSI restoration needs to obtain a clean HSI H from 

the observed HSI H . Generally, the HSI without noise H 
has the property of low rank, in order to get better HSI 
image restoration results, let , 1,2...i i N H M and 
Z=DH. We propose an SSC-LRTC model as follows  
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The minimizer of Eq.(2) exists. In addition, it is global 
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Eq.(2) can be written as  
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where 1( , , ,..., )NQ H Z M M is the indicator function of Q, 
which can be defined as (for example) 
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The minimizer of Eq.(3) exists and is global. Moreover, 
since 1( , , ,..., )NJ H Z M M  is strongly convex, the mini-
mizer of Eq.(3) is unique. In the following, we consider 
the concrete form of a dual problem. 
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The augmented Lagrangian function of Eq.(6) is given 

by 
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For S, we have  
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The minimizer of Eq.(8) is  
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Let : /i i i p  U Z and T
( )i i i i i U V , where Σi is a 

diagonal matrix whose size is the same with εi(i), and its 
ith primary diagonal element of Σi denotes as σi. Thus 

Tmin{ , } ,i i i i iP U I V                        (11) 

where Ii is a diagonal matrix with the same size of Σi, 
and the primary diagonal elements are 1. The result 
of min{ , }i i I is a matrix whose ith primary diagonal 
entry is min{ ,1}i with other entries equaling 0. The 
minimizer of Eq.(10) is given by 

Fold ( ),i i iM P                              (12) 
where is the mode-i fold operator. Then, we discuss the 
computation about Ui. 

For Ui, we have 
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For y, we obtain  

2 T T

1

1min , .
2 2

N

iF
i


 

   y
y T D y U D y S

  
(15) 

The minimizer of Eq.(15) is given by
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We apply the multi-block ADMM to solve Eq.(6). We 
can observe that one block (M1,…,MN) is nonsmooth and 
the other blocks are the convex quadratic functions in 
Eq.(6).

 Thus, we can obtain a convergent optimal 1{ ,..., ,k k
NM M  

1 ,..., , , }k k k k
NU U y S  solution    to    Eq.(6),    and 

1{ , ,..., }k k k
NT Z Z is an convergent optimal solution of the 

dual problem of Eq.(6), i.e., an optimal solution of Eq.(3). 

 

Fig.1 Restoration results of Pavia University with 
Gaussian noise: (a) Noisy image; (b) HaLRTC; (c) 
FaLRTC; (d) SiLRTC; (e) LRMR; (f) RLRTR; (g) LRTV; 
(h) SSC-LRTC 
 

To show the performance of our method on HSI resto-
ration, we perform several experiments on degraded HSI 
data and assess results quantitatively. We compare the 
results of our method with 5 state-of-the-art restorations 
methods, such as fast low-rank tensor completion 
(FaLRTC) [11], high accuracy low-rank tensor completion 
(HaLRTC) [11], and simple low-rank tensor completion 
(SiLRTC) [11], LRMR [12], RLRTR [13] and LRTV [14]. 

 
Fig.2 Restoration results of Botswana with speckle 
noise: (a) Noisy image; (b) HaLRTC; (c) FaLRTC; (d) 
SiLRTC; (e) LRMR; (f) RLRTR; (g) LRTV; (h) 
SSC-LRTC 

Peak signal-to-noise ratio (PSNR), structural similarity 
index measurement (SSIM), and feature similarity index 
measurement (FSIM) are utilized to assess the perform-
ance of methods on each band. We give the mean value 
of the three kinds of evaluation indexes, MPSNR, 
MSSIM, and MFSIM.  

Two HSI data, Pavia University and Botswana are 
used for simulation. The original image of the Pavia 
University Scene has 103 spectral bands and the size of 
the image of each band is 610×340 pixels. Botswana data 
has 145 spectral bands and images of each band have the 
size of 1 476×256. In our experiments, the sub-image of 
Pavia University Scene with the size of 340×340×103 
and that of Botswana with the size of 256×256×115 are 
used. Then, we add Gaussian noise, speckle noise and 
deadlines to the two HSI data respectively for testing. 

We set ε=0.1, β=0.15, τ=1.2, ρ=12 in the proposed 
method and they are updated with iteration. Firstly, 
Gaussian noise whose mean equals 0 and variance equals 
0.01 is added to Pavia University and Botswana HSI, and 
restore them using HaLRTC, FaLRTC, SiLRTC, 
RLRTR, LRMR, LRTV methods, and the proposed 
SSC-LRTC method. 

As shown, the original HSI was heavily contaminated 
in terms of image recognition and overall quality. After 
restoration, most of the noise was removed. However, 
HaLRTC, FaLRTC and SiLRTC are more suitable for 
low-intensity Gaussian noise removal. LRMR and 
RLRTR are better at suppressing Gaussian noise, but 
cannot remove strong impulse noise. In some denoising 
bands, there is still over-smoothing of the image and loss 
of texture information. LRTV also achieves good de-
noising results, but the denoising results in regions with 
rich texture information are not good enough compared 
to SSC-LRTC. The method in this paper smooths out 
more local detail with clearer local contours. The visual 
effects and metrics analysis show a significant improve-
ment in the effectiveness of our proposed method over 
other methods, further demonstrating the effectiveness 
and rationality of our improved method. 

In this paper, a spatially and spectrally consistent 
regularized low-rank tensor complementation model is 
proposed for noise removal and complementation of HSI 
data. Firstly, an SSC regularisation method is proposed  
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Fig.3 Evaluation values of indexes for noise removal: 
Results of (a) PSNR, (b) SSIM and (c) FSIM of Pavia 
University HSI data (Gaussian); Results of (d) PSNR, 
(e) SSIM and (f) FSIM of Botswana HSI data (speckle) 
 
to help recover missing data from HSIs by considering 
the differences between images of different bands. Then, 
a convergent multi-block ADMM algorithm is derived to 
solve the model and prove the existence and convergence 
of the solution. Finally, various denoising experiments 
are conducted to verify the superiority of the method. 

 

Tab.1 Mean values of quantitative indexes for dead line removal  

Image Index FaLRTC    HaLRTC  SiLRTC  LRMR RLRTR LRTV SSC-LRTC 

MPSNR 25.030 6 22.272 5 24.943 3 17.369 2 17.341 6 17.444 4 27.206 4 

MSSIM  0.634 7 0.502 2 0.624 6 0.013 6 0.010 6 0.030 0 0.869 6 

Pavia University 
(X-direction) 

MFSIM 0.755 1 0.595 7 0.748 2 0.554 5 0.473 4 0.573 8 0.927 0 

MPSNR 21.083 9 21.110 5 21.069 7 15.746 8 15.724 6 15.805 3 26.792 5 

MSSIM  0.591 3 0.595 4 0.595 4 0.012 4 0.009 7 0.034 3 0.895 7 

Pavia University 
(Y-direction) 

MFSIM 0.718 4 0.720 9 0.714 7 0.544 7 0.455 2 0.560 9 0.936 6 

MPSNR 29.129 7 18.325 2 29.337 5 18.321 7 18.315 9 18.391 1 34.199 6 

MSSIM  0.726 0 0.034 7 0.733 1 0.034 5 0.033 9 0.043 1 0.931 8 

Botswana 
(X-direction) 

MFSIM 0.828 8 0.587 2 0.834 1 0.587 2 0.585 9 0.589 7 0.958 4 

MPSNR 28.336 1 17.902 4 28.514 8 17.885 8 17.873 6 17.963 5 33.702 7 

MSSIM  0.705 5 0.034 3 0.712 2 0.032 6 0.031 6 0.041 7 0.935 2 

Botswana 
(Y-direction) 

MFSIM 0.823 3 0.588 2 0.827 6 0.596 4 0.535 1 0.588 5 0.962 3 
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The method in this paper has some advantages and 
achieves some results in the application of HSI recovery, 
but is of course subject to certain limitations. The higher 
computational complexity with long processing time can 
lead to poor applicability in applications, and forms such 
as parallel computing should be considered in subsequent 
research to improve the generalisability of model appli-
cations. 
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