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Existing action recognition methods based on event cameras have not fully exploited the advantages of event cameras, 
such as compressing event streams into frames for subsequent calculation, which greatly sacrifices the time informa-
tion of event streams. Meanwhile, the conventional PointCloud-based methods suffer from large computational com-
plexity while processing event data, which make it difficult to handle long-term actions. To tackle the above problems, 
we propose a dynamic graph memory-boosting recurrent neural network (DG-MBRNN). The proposed DG-MBRNN 
splits the event stream into sequential graph data for preserving structural information, then uses the recurrent neural 
network (RNN) with boosting spatiotemporal memory to handle long-term sequences of actions. In addition, the pro-
posed method introduces a dynamic reorganization mechanism for the graph based on the distances of features, which 
can effectively increase the ability to extract local features. In order to cope with the situation that the existing datasets 
have too simple actions and too limited categories, we propose a new event-based dataset containing 36 complex ac-
tions. This dataset will greatly promote the development of event-based action recognition research. Experimental re-
sults show the effectiveness of the proposed method in completing the event-based action recognition task.  
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Event-based action recognition has practical applications 
in scenarios where fast actions may occur, such as sign 
language recognition, human-computer interaction, and 
gaming. Event cameras process each pixel independently 
and output an event that contains the pixel coordinate 
and timestamp whenever the light intensity change by 
more than a threshold. However, individual events do not 
contain any motion information, and the events compos-
ing the actions are not output all at once. Therefore, ex-
tracting action features from the event stream is a chal-
lenging task.  

As the mainstream methods for processing event 
streams, both frame-based and PointCloud-based meth-
ods have significant drawbacks. Frame-based methods 
are further divided into image-based and representa-
tion-based methods for event streams. The image-based 
methods[1-3] accumulate events within a time period on 
the same time plane to generate a sparse data image, and 
use RGB-based image recognition methods to recognize 
the generated image. Therefore, the time information is 
missed during the time period, resulting in motion blur in 
the event frames and the low latency feature of the event 
camera is not fully utilized. The representation-based 
methods[4,5] obtain several frames containing non-visual 
information from event streams and then perform the 

action recognition task by using the conventional 
RGB-based methods. Although these methods have 
achieved good performance, the conventional 
RGB-based methods are not designed for such 
non-visual information, so they cannot fully extract rep-
resentation information for the actions. The Point-
Cloud-based methods[6-10] take the timestamp and coor-
dinate of events as a three-dimensional space structure. 
However, the PointCloud-based methods cannot handle 
long-time actions because of the large amounts of data. 

Although recurrent neural networks (RNNs) can han-
dle long-term event streams, they lack the ability to ex-
tract spatial features from event streams[11]. The input of 
RNNs is divided into event stream segments. Due to the 
low latency of event cameras, there is rich temporal in-
formation between event stream segments, which means 
that the attention needs to be paid to spatial feature. Al-
though the PredRNN method[12] has increased the ability 
to extract spatial features from data by adding the spati-
otemporal memory, redundant or invalid information 
may be generated as memory accumulates, which affects 
the expression of spatial information. Therefore, the cur-
rent RNNs demonstrate good capacity to extract tempo-
ral features, but they often overlook the significance of 
spatial features. 
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Fig.1 Framework of memory-boosting RNN with dynamic graph for event-based action recognition 

 
In addition, the existing datasets also suffer from is-

sues such as too simple actions and too limited categories. 
By simulating events from the RGB Human3.6m dataset, 
SCARPELLINI et al[13] released event-Human3.6m, an 
event-based human pose estimation dataset. However, 
due to the complexity and asynchrony of event streams, 
the simulated data generated by the algorithms has limi-
tations. MIAO et al[14] used an event camera to capture 
action dataset of ten actions, such as arm waving, jump-
ing, sitting, etc. AMIR et al[15] used an event camera to 
capture action dataset of eleven actions, such as waving, 
air guitar, clapping, etc. In these two real event datasets, 
the action type is relatively simple, and there are many 
repeated or continuous looping actions that may not fully 
represent real-world scenarios.  

To overcome the aforementioned challenges, we pro-
pose a method called dynamic graph memory-boosting 
recurrent neural network (DG-MBRNN). This approach 
segments the event streams into multiple 
graph-structured data and feeds them into the RNN, 
which preserves temporal information while reducing 
model complexity. By making spatiotemporal informa-
tion pass through all RNN cells, we use RNN with 
boosting spatiotemporal memory to improve the extrac-
tion of spatial features from the event stream. Our meth-
od includes a dynamic construction mechanism to re-
build the event graph based on feature distance in each 
RNN cell, which enriches the graph with more local in-
formation. Furthermore, we collect a complex action 
dataset of 36 non-cyclic actions with similar actions to 
evaluate the algorithm's effectiveness. We plan to release 
the dataset upon publication.  

We propose a novel RNN architecture, DG-MBRNN, 
to address the challenges in event-based action recogni-
tion. Fig.1 shows the network architecture of 
DG-MBRNN. The dynamic graph, EdgeConv, and 

MBRNN together form a DG-MBRNN cell, which takes 
the features of the event streams, hidden information, 
and spatiotemporal information as inputs and outputs 
updated values. Notably, the spatiotemporal information 
is represented by the orange line and passes through all 
MBRNN cells. Finally, the event features in the graph 
output by each MBRNN cell are concatenated and 
passed as input to an MLP with softmax to obtain the 
final classification scores. 

Event stream is a group of asynchronous events, where 
each event ( , , , )e x y t p  presents a change in the inten-
sity of light at position ( , )x y  at time t that exceeds a 
certain threshold value. p is a binary value polarity which 
indicates the pixel gets brighter or darker than before. 
The event stream containing n events can be represented 
as 1 2{ , ,..., } F

nX e e e   , where F is the feature di-
mension. Specifically, the initial event stream has F=4. 

To extract spatiotemporal information between events, 
we use two-dimensional convolution for feature extrac-
tion. Therefore, we construct a graph ( , ) V   by 
connecting K-nearest-neighbor events based on their 
feature distances, where {1,2,..., }V n  represents the 
set of event indices and V V    represents the set of 
edges. In each DG-MGRNN cell, the graph is updated by 
following steps. 

First, edge features are updated by EdgeConv. The 
edge feature value between event ei and ej is defined as  

( ),ij i j ie e e                             (1) 
where   represents the concatenation. The edge fea-
ture includes both the event features and the feature dif-
ferences, which endows   with the capability of ex-
pressing local features. Second, we update event features 
based on edge features as 

:( , )
max ( , ),i i jj i j

e h e e
 

                         (2) 
where max  means taking the maximum value. This 
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creates a new graph ( , ) V   with feature information, 
where its size is ( , , 2* )n k F . And the graph can be used 
to extract features using two-dimensional convolution. 

In order to improve the ability of the network to ex-
tract spatial-temporal features from event streams, we 
introduce the spatiotemporal memory  [12]. As indi-
cated by the orange arrows in Fig.1,   involved the 
computation of all cells in the network and acquires in-
formation from them. However, as the iterations proceed, 
long-standing features in   become ineffective and 
redundant. To address this, the confidence information is 
extracted from X, H, and  , and passed as input to 
Sigmoid function to obtain the weakening matrix R: 

( *[ , , ]),X H  RR                     (3) 
where H is the hidden feature of the RNN,   repre-
sents the convolutional kernel, and * denotes the convo-
lution operation. Compensation information is extracted 
from X, H, and   to build the boosting matrix D: 

*[ , , ],X H DD                        (4) 
where is updated by 

,   R D                       (5) 
where   is the symbol for Hadamard product. The 
values of the weakening matrix R are between 0 and 1,  

which can weaken the ineffective features in . To 
avoid affecting the effective features, the boosting matrix 
D is used to compensate for the weakened . 

The gesture dataset[15] is captured using a DVS128 
camera and consists of 1 342 event streams of 11 hand 
gestures performed by 29 participants in different light-
ing conditions, including natural light, fluorescent light, 
and LED light, with a resolution of 128×128. 

In order to build a more challenging event-based com-
plex action dataset, we capture the event streams with a 
CeleX5 camera with a resolution of 1 280×800. As 
shown in Tab.1, we design 36 non-cyclic actions. Par-
ticularly, these actions have similar movements. Addi-
tionally, to increase the difficulty of recognition, the ac-
tors are not required to complete the actions at the same 
speed. The dataset is recorded by 31 different actors of 
different age, height and gender. A total of 2 232 pieces 
of data are collected. For different actions and actors, 
each data has a variable duration spanning from ap-
proximately 1 s to 2 s. As shown in Fig.2, some similar 
actions are presented, and each image is obtained by ac-
cumulating events in 0.02 s. Specifically, the red point 
represents a decrease in light intensity, while blue repre-
sents an increase in light intensity. 

Tab.1 Action list of our dataset  

Heart-to-heart Sneezing Raising the 
hand 

Gesture of 
OK 

Gesture of 
like 

Gesture of 
negative 

Putting hands 
together 

Using smart 
phone 

Gesture of 
farewell 

Left shoulder 
pain 

Right 
shoulder 

pain 

Clenching 
one fist Silencing Rejecting Wiping the 

nose Pointing up Pointing 
down 

Pointing 
left 

Pointing right Gesture of 
stop 

Waving to 
come 

Waving to 
leave 

Spreading the 
hands Applauding Gesture of 

greet 
Shaking the 

head Nodding 

Gesture of 
bye Drinking Standing up Sitting 

down Jumping Back pain Pacing back 
and forth Neck pain Toothache 

 

 

      

Fig.2 Some similar actions in our dataset 
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Considering the computational complexity, we use the 
OctreeGrid[16] algorithm to downsample the dataset. The 
OctreeGrid filtering algorithm is applied to significantly 
reduce the number of events while preserving the spatio-
temporal structure of the event streams. 

After downsampling, the data is divided into segments, 
and a fixed number of events are sampled under distance 
constraints from each segment for training and testing. 
The performance comparison of different numbers of 
event stream segments and event numbers for one 
MBRNN in DG-MBRNN on gesture dataset is shown 
later. Through experiments, it was found that the best 
performance is achieved by inputting 4 event stream 
segments with 1 024 events each. As shown in Fig.1, 
each data segment is input into the recurrent network in 
time order. 

In our proposed DG-MBRNN, the value of K in the 
K-nearest neighbor algorithm is set to 20. We use three 
layers of MBRNN with a 128-dimensional hidden layer. 
For the first layer, four segments of event stream were 
input in the time direction. The batch size for training is 
set to 8, and the learning rate is set to 0.01 for the first 
100 epochs, and then reduced to 0.001 for the next 400 
epochs. The experiments have been conducted on a 
Linux system equipped with two NVIDIA RTX 3090 
graphics cards. 

We use the accuracy of method on the test set as the 
evaluation criterion.  

Tab.2 presents the results of ablation experiments 
conducted on the dynamic graph, which demonstrates 
that its inclusion effectively improves accuracy. Since 
the graph is reconstructed based on feature distances, 
events of the same type are clustered together, which 
leads to the graph containing more rich local features. 
Tab.3 shows the results of ablation experiments con-
ducted on the spatiotemporal memory. The result dem-
onstrates that using either the weakening or the boosting 
matrix independently results in decreased accuracy, 
while their simultaneous usage leads to increased accu-
racy. The possible reason for the situation described 
above might be that the weakening matrix weakens inva-
lid features while also affecting valid features, and the 
boosting matrix enhances valid features while also af-
fecting invalid features, which leads to invalid features 
are suppressed and valid features are balanced. 

Increasing the number of edges in the graph can in-
crease the features contained in the graph, but if the 
number of edges continues to increase, the two events at 
both ends of the edge will no longer have similar features, 
which will have a negative impact on the results. Tab.4 
shows the effect of K value on the experimental results, 
using 4 event sequences with 1 024 events each. The 
results show that the accuracy increases first and then 
decreases with the increase of K value, and reaches the 
optimal value when K is 20, which confirms our hy-
pothesis. Tab.5 shows the impact of the number of 
time-flow segments and the number of events per seg-

ment on the experimental results with K=20. "-" indicates 
that the experiment is not conducted due to hardware 
limitations. The results show a trend where the accuracy 
initially increases as the number of segments increases, 
but then decreases after reaching a certain point. Another 
trend is that as event number increases, the accuracy first 
increases rapidly and then grows slowly. Finally, the 
combination of 4 event sequences and 1 024 events per 
input achieves the best performance. 

Tab.2 Performance comparison of DG-MBRNN on 
gesture dataset with and without dynamic graph 

 
Method Accuracy (%) 

- 97.06 
+ dynamic graph 99.11 

Tab.3 Performance comparison of different spatio-
temporal memory in DG-MBRNN on gesture dataset  

 
Method Accuracy (%) 

- 98.81 
+ the weakening matrix R 98.39 
+ the boosting matrix D 97.83 
+ both R and D 99.11 

 

Tab.4 Performance comparison of different K of KNN 
in DG-MBRNN on gesture dataset 

 
K Accuracy (%) 
10 95.59 
15 97.82 
20 99.11 
25 98.71 

Tab.5 Performance comparison of different numbers 
of event stream segments and event numbers for one 
MBRNN in DG-MBRNN on gesture dataset 

Event number for one MBRNN (%) 
Number of event segments 

512 1 024 2 048 
1 89.43 91.97 96.28 
2 91.72 95.92 97.53 
3 93.12 97.97 98.29 
4 96.68 99.11 - 
5 95.43 98.84 - 

In particular, the unpartitioned event streams are di-
rectly constructed as graph structures for training and test-
ing, as shown in the first row of Tab.5. The experiments 
show that under the same total number of input event 
points, the network has similar recognition capabilities 
regardless of whether the event streams are split. For ex-
ample, the accuracy of 96.28% is achieved by directly 
inputting 2 048 event points, while the accuracy of 
95.92% is achieved by partitioning 2 048 into two graph 
data, and the accuracy of 96.68% is achieved by partition-
ing 2 048 into four graph data, indicating that splitting the 
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event streams into sequential graph data can preserve 
most of the spatiotemporal information of the event 
streams. So, splitting the event stream into sequential 
graph data is an effective data processing method. Addi-
tionally, using the RNN with boosting spatiotemporal 
memory can effectively handle segmented graph struc-
tures, making it possible to process longer temporal ac-
tions without affecting recognition accuracy.  

Tab.6 shows the comparison results between our pro-
posed DG-MBRNN and state-of-the-art (SOTA) meth-
ods on the gesture dataset[15]. Except for the slightly 
lower performance compared to the temporal binary rep-
resentation method based on the Inception3D network, 
DG-MBRNN outperforms other methods, including the 
temporal binary representation method based on the long 
short-term memory (LSTM) network. The Inception3D 
network has a complex structure and requires a large 
amount of computation, while DG-MBRNN achieves 
similar results with only three layers of RNN network. In 
addition, although the DG-MBRNN uses dynamic graph 
and EdgeConv, similar to the dynamic graph converlu-
tional neural network (DGCNN), the DG-MBRNN gets 
better performance than DGCNN, which shows that us-
ing RNN with boosting spatiotemporal memory can ef-
fectively improve the accuracy of event-based action 
recognition. Overall, the above results demonstrate the 
effectiveness of our proposed DG-MBRNN. 

Tab.6 Performance comparison with SOTA methods 
on gesture 

Method Type Accuracy (%) 
ST filter + CNN[1] (2019) Image-based 94.85 
Spatial-temporal images[2] 

(2020) 
Image-based 97.4 

ACE-BET[3] (2022) Image-based 98.88 
PointNet++[6] (2019) PointCloud 94.1 

PAT[7] (2019) PointCloud 96 
ST-EvNet[8] (2020) PointCloud 97.27 
DGCNN[9] (2020) PointCloud 98.56 

RG-CNN[10] (2019) PointCloud 90.62 
Temporal binary represen-

tation[5] (2021) 
representation 99.62 (Incep-

tion3D) 
Temporal binary represen-

tation[5] (2021) 
representation 97.73 (LSTM) 

Time-surfaces + KNN[4] 
(2020) 

representation 97.2 

DG-MBRNN (ours) PointCloud-RNN 99.11 
 
DG-MBRNN achieves an accuracy of 92.19% on our 

dataset, which is quite impressive considering the chal-
lenging nature of our proposed dataset that contains 
many similar and diverse actions, especially for 
low-resolution event stream data. For instance, Fig.2 
shows the action of clasping fists and putting hands to-
gether. The performance of DG-MBRNN on our pro-
posed dataset is only slightly lower than that on the ges-
ture dataset, which fully demonstrates that DG-MBRNN 

can effectively handle the complex situations with simi-
lar and diverse actions.  

Tab.7 shows the performance comparison between the 
PointCloud-based method DGCNN[9] and DG-MBRNN 
on our dataset. The accuracy gap between DGCNN and 
DG-MBRNN is greater on our dataset than on the ges-
ture dataset, indicating that our dataset is more effective 
in verifying the algorithm's effectiveness and the 
DG-MBRNN is superior. 

Tab.7 Performance comparison with DGCNN methods 
on our proposed dataset 

Method Accuracy (%) 
DGCNN[9] 83.68 

DG-MBRNN (ours) 92.19 

In this paper, we propose a DG-MBRNN method for 
event-based action recognition tasks. DG-MBRNN uses 
a novel RNN module that corrects spatiotemporal mem-
ory by weakening and boosting matrices, highlighting 
long-term effective features and shielding invalid fea-
tures. DG-MBRNN uses EdgeConv and dynamic graph 
to aggregate events with similar properties, which in-
creases the local feature expression ability of event 
points. We have constructed a new event-based action 
recognition dataset that contains more actions and similar 
actions compared to existing datasets, which will greatly 
promote the development of event-based action recogni-
tion. Through experiments on the gesture and our data-
sets, the effectiveness of the DG-MBRNN method has 
been verified. 
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