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Fast image reconstruction network in image stitching 
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Compared with the traditional feature-based image stitching algorithm, the free-view image stitching algorithm based 
on deep learning has the advantages of fast stitching speed and good effect. However, these algorithms still cannot 
achieve real-time splicing speed. For the image reconstruction stage, we redesign a new fast image reconstruction 
network. This network is designed based on ShuffleNet, and the new network structure and loss function will reduce 
the time required for image reconstruction. In addition, this network can also reduce the performance loss after the 
network is lightweight. It is proved by experiments that the fast image reconstruction network can realize real-time 
high-resolution free-view image reconstruction. 
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As a research content of computer vision, image stitching 
can be applied in many scenarios. In virtual reality tech-
nology [1], the application of image stitching can combine 
different scenes to build a larger virtual space. In remote 
sensing technology [2], image stitching can enable artifi-
cial satellites, aircraft and other equipment to collect 
more comprehensive, three-dimensional, and intuitive 
information scenes. In intelligent driving technology[3], 
the image information collected by the sensor can elimi-
nate blind spots in the field of vision and reduce potential 
safety hazards through image stitching. In addition, im-
age stitching technology can also be applied to medical 
treatment [4], monitoring [5], and so on. Therefore, realizing 
real-time image stitching on edge terminals has ex-
tremely high engineering application value. On edge 
terminals, such as vehicle-mounted computers and port-
able virtual reality devices, high-resolution real-time 
image stitching has important practical significance. 

Traditional image stitching algorithms need to obtain 
external parameters through camera calibration to 
quickly calculate the deformation formula of the image, 
so as to achieve the real-time stitching effect of 
high-resolution images. In scenes without camera cali-
bration conditions, the calculation of traditional image 
stitching algorithms is too large, and it is often necessary 
to reduce the calculation by reducing the resolution[2]. In 
this way, the cost of achieving real-time stitching effects 
usually results in a resolution that is too low to be prac-
tical. However, the increase in computing power brought 
about by the development of computer hardware has 
provided an important development foundation for deep 

learning. With the in-depth research and improvement of 
various deep learning algorithms and frameworks, deep 
learning has been applied to computer vision [6], date 
transmission [7], fiber spectrometer [8] and other aspects, 
and achieved ideal results in terms of accuracy and speed. 
In view of the advantages of deep learning over tradi-
tional image processing techniques, the combination of 
image stitching and deep learning can also bring per-
formance and speed improvements. The existing image 
stitching based on deep learning[9], although it does not 
require camera calibration, can be flexibly applied to 
various scenes, and the stitching speed has also been 
greatly improved, it still cannot achieve real-time stitch-
ing at high resolution. 

On the basis of the principle of the existing image 
stitching algorithm, we lighten the image reconstruction 
stage, redesign the network by combining the core ideas 
of ShuffleNet [10] and ResNet [11], reduce the parameters 
and calculation amount of the network model, and realize 
low computing resources under the real-time image re-
construction work. In addition, we also designed a new 
loss function to ensure that the image reconstruction ef-
fect after reducing the parameters and calculation amount 
will not have too much loss. Specifically, for a set of 
images that have been calibrated using homography or 
depth homography matrices, these images are first 
passed through several layers of lightweight convolu-
tional layers to extract basic features. Then, through the 
processing of deep autoencoder, the overlapping regions 
are learned and the image is reconstructed. Finally, the 
idea of ResNet is used to connect the output layer of the 
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deep autoencoder to the input layer to reduce the loss of 
information in the convolution process to ensure the 
generation of high-resolution images. In addition, the 
new loss function can also reinforce the performance of 
the lightweight image reconstruction network through 
the comparison of image features. 

The fixed-viewpoint image stitching algorithm is 
task-driven and designed for special application scenarios, 
such as autonomous driving and surveillance video. The 
conventional image stitching algorithm with a fixed view-
ing angle is to establish a parametric image alignment 
model through known camera calibration parameters when 
the relative positions of the two cameras are fixed, so as to 
achieve the image stitching effect. In fact, the homography 
transformation is the most common image alignment 
model, which uses methods such as translation, rotation, 
scaling, and vanishing point transformation to align one 
image to another. Moreover, the fixed camera position can 
ensure that after the complex initial alignment model pa-
rameters are calculated, the stitched image can be quickly 
obtained without a long calculation process. However, 
image stitching algorithms for fixed viewpoints are often 
end-to-end working models, which cannot be extended to 
stitched images of arbitrary views. 

Due to the powerful feature extraction capabilities of 
convolutional neural networks (CNN), more and more 
image stitching projects choose to use CNN to achieve 
better stitching results. However, some of these methods 
only use CNN for the feature extraction stage [12], and 
some can only be used to stitch images of fixed view-
points instead of free viewpoints [13]. In addition, there are 
more free-view image stitching algorithms based on deep 
learning that will be introduced in the next section. 

In order to realize the image stitching of any view, the 
conventional free-view image stitching algorithm estab-
lishes the image alignment model through a fea-
ture-based method, and the conventional free-view image 
stitching algorithm is divided into two types based on 
different selections of target features. The first approach 
removes artifacts by aligning the target image with the 
reference image as much as possible. These methods 
divide the image into distinct regions and compute a 
homography for each distinct region. By applying a spa-
tially varying warp on these regions, overlapping regions 
are well aligned and artifacts are significantly reduced. 
For example, double homography warping (DHW) [14] 
aligns the foreground and background of an image sepa-
rately, which works well in scenes consisting of two 
main planes, but does not perform well in more complex 
scenes. The as-projective-as-possible (APAP) [15] method 
divides the image into dense grids, and each grid will 
assign a corresponding homography by weighting the 
features. 

The second approach is by studying seam effects[16]. 
By optimizing the cost associated with the seam, the 
overlap can be divided into two complementary regions 
along the seam. Then, a stitched image is formed from 

the two regions. Feature-based solutions can significantly 
reduce artifacts in most scenes. Nevertheless, they still 
rely heavily on feature detection, so in scenes with few 
features or low resolution (in Fig.1), the stitching per-
formance drops dramatically or even fails.  

 

 

Fig.1 The Images that failed to stitch 
 
Although the conventional free-view image stitching 

algorithm can reduce artifacts through various optimiza-
tion methods to ensure stitching quality, more and more 
complex optimization algorithms will increase the time 
complexity of image stitching dramatically. Therefore, in 
order to balance the stitching image quality and stitching 
time, many researchers try to apply CNN to free-view 
image stitching. As mentioned earlier, the image stitch-
ing algorithm using CNN is either not a complete deep 
learning framework, or it can only stitch pictures with a 
fixed perspective. Then, a depth-of-view image stitching 
method [17] attempts to address these two issues. In this 
view-free solution, depth image stitching can be done by 
a depth homography module, a spatial transformer mod-
ule and a depth image refinement module. However, all 
solutions are supervised methods, and since stitching 
labels are not available in real scenes currently, there are 
no real deep image stitching datasets. Therefore, these 
networks can only be trained on parallax-free synthetic 
datasets, resulting in unsatisfactory applications in real 
scenes. 

To overcome the limitations of feature-based solutions 
and supervised deep solutions, an unsupervised deep 
image stitching framework [18] is proposed, which in-
cludes an unsupervised coarse image alignment stage and 
an unsupervised image reconstruction stage. At the same 
time, due to the use of real scenes as the dataset, the 
stitching quality and acceptable resolution of this 
framework are both enhanced compared to previous 
work. Nonetheless, like previous work on free-view im-
age stitching, this work failed to reduce the stitching time 
of images to real-time effects. 

As mentioned earlier, the currently best image stitch-
ing algorithm based on deep learning still cannot achieve 
real-time recognition speed. Therefore, after testing the 
algorithm, we found that lightweighting its image recon-
struction stage can significantly reduce the stitching time. 
Currently, the image reconstruction stage used by this 
unsupervised deep image stitching framework is imple-
mented through two branches: a low-resolution warping 
branch and a high-resolution refinement branch. In the 
case of building a network using CNN as the main layer, 
using low-resolution images as input in complex parts of 
the network can reduce the computational load and 
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inference time of the neural network. However, when 
stitching high-resolution images, information will be lost 
in the deformation branch, resulting in that the stitched 
image cannot restore the resolution of the input image. 
Therefore, we propose a new fast image reconstruction 
network, using the ShuffleNet block to replace the origi-
nal convolutional layer, and directly use the original im-
age for processing instead of splitting into two branches. 
Compared with other lightweight network structures, 
ShuffleNet can better balance inference speed and accu-
racy, and reduce image reconstruction time while ensur-
ing reconstruction quality as much as possible. In addi-
tion, the ShuffleNet blocks can also help the model op-
timize the memory reading speed and further improve 
the reconstruction speed. 

The fast image reconstruction network is shown in 
Fig.2. After the two aligned input images are superim-
posed into the network, the feature map is added after a 
layer of convolution. Afterwards, the input image aug-
mented with feature maps passes through a lightweight 
deep autoencoder composed of ShuffleNet blocks. In this 
deep autoencoder, the encoding and decoding layers of 

the same size will be directly connected to ensure feature 
reuse and information integrity. It is worth noting that 
this lightweight deep autoencoder is composed of three 
ShuffleNet blocks (in Fig.3). The number of feature 
maps of the ShuffleNet keep block remains unchanged 
and is used to replace the original convolutional layer. 
The number of feature maps of the ShuffleNet down 
block is doubled, but the size of the feature maps will be 
quartered to replace the downsample layer. The number 
of feature maps of the ShuffleNet up block is half of the 
original, but the size of the feature maps will be ex-
panded by four times to replace the upsample layer. 
Depth separable convolution is used in all ShuffleNet 
blocks to ensure that the effect of the network will not be 
much worse after reducing the amount of network pa-
rameters and calculations. After the lightweight deep 
autoencoder, the picture has completed the basic splicing. 
After that, it is necessary to use some ShuffleNet keep 
blocks to refine the effect of the picture. Before refining 
the picture, it is necessary to connect the processed fea-
ture map with the original image, so that more details of 
the original image can be learned. 

 

 
Fig.2 The structure of fast image construction network 

 

 

Fig.3 (a) ShuffleNet keep block; (b) ShuffleNet down 
block; (c) ShuffleNet up block 
 

During the training of the model, the reconstruction 
rules for image stitching are learned through content 
masks and seam masks, which are generated in the same 
way as used in the original image reconstruction network 
mentioned earlier. Content mask can constrain the con-
tent of the stitched image to be consistent with the origi-

nal image content. The seam mask can reduce the blur 
around the overlapping area, so that the overlapping area 
can transition naturally. The difference is that two con-
tent mask loss functions and one seam mask loss func-
tion are used in the fast image reconstruction network. 
Among them, the calculation formula of the loss function 
of the seam mask remains unchanged, and the calculation 
formulas of the loss function of the two content masks 
are shown as following equation 

 l
c P S AW AW= , ,L L I M I                     (1) 

 h
c P S BW BW= , ,L L I M I                     (2) 

where l
cL and h

cL represent the low-level and high-level 
content mask loss functions. LP is the perceptual loss [19]. 
IS is the stitched picture. MAW and MBW are the content 
masks of the first warped image and the second warped 
image, respectively. IAW and IBW denote the first warped 
input image and the second warped input image, respec-
tively. Specifically, in the perceptual loss, two kinds of 
content mask loss functions select the 'con3_3' layer and 
the 'conv5_3' layer in VGG19 [20], respectively. By 
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comparing the feature differences between the stitched 
image and the original image in different layers by 
VGG19, the stitched image can be made with the origi-
nal image as similar as possible in different perceptual 
characteristics. Thus, the total loss function of the entire 
network is shown in the following equation: 

 l h
S S c c c ,L λ L λ L L                      (3) 

where λS and λc represent the weight parameters of the 
seam mask loss function and the content mask loss func-
tion, respectively, and LS represents the loss function of 
the seam mask. 

To train the model and verify its stitching performance 
and speed, we use a combined dataset, partly from vari-
able motion videos [21] and partly from real datasets cap-
tured by ourselves. In particular, these data contain im-
ages of different scenes, different disparities, and differ-
ent overlapping ratios. Diverse data can make the model 
more robust and practical. So far, we have 10 440 data 
for training the model and 1 126 data for testing. After 
training, the effect of stitching pictures using this model 
is shown in Fig.4. Among them, case (5) and case (6) 
belong to the real dataset, with large parallax and low 
overlap rate. Even so, the fast image reconstruction net-
work still achieves good results. 

 

 
Fig.4 The results of image stitching 

 
 In addition to intuitive picture results, data results (in 

Tab.1) obtained through statistical comparison are 
equally important. Overall, the algorithm using deep 
learning far outperforms the traditional algorithm in 
splicing success rate and speed. Specifically, the algo-
rithm used in Ref. [18] still has the highest splicing suc-
cess rate. But in terms of stitching speed, our algorithm 
can reduce the average time spent stitching pictures to 
0.067 s. And in terms of success rate, compared with the 
highest 98.43%, our model can optimize the time to the 

real-time level with only limited concessions. 

Tab.1 Performance of different image stitching algo-
rithms (including traditional algorithms, supervised 
learning and unsupervised learning) 

Method Success rate Speed (average) 

APAP [15] 92.56% 38.62 s 

Robust ELA[16] 87.92% 25.77 s 

Ref. [18] 98.43% 0.47 s 

EPISNet [22] 96.81% 2.83 s 

Ours 97.78% 0.067 s 

 
Comparing the intuitive stitching results of different 

methods (in Fig.5), it can be found that all methods 
achieve successful stitching results in small baseline im-
ages. In the dark night scene, APAP, robust ELA, and 
EPISNet all have obvious transition lines at the edge of 
the overlapping area. In the large baseline scene, EPIS-
Net produces artifacts and robust ELA appears blurred. 
Overall, APAP, Ref.[18] and our method all generate 
good stitched images. 

Looking specifically at the splicing results, it can be 
found that in Fig.6, the spliced images did not fail due to 
the reduction in resolution. Even in very challenging 
dark night scenes, the fast image reconstruction network 
can still achieve good results. Therefore, the resolution 
of the image to be stitched does not have a great influ-
ence on the reconstruction success rate.  

 
Fig.5 The results of different methods order by row: 
(a) APAP; (b) Robust ELA; (c) Ref. [18]; (d) EPISNet; 
(e) Ours
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Fig.6 The results of different resolutions 
  

This paper proposes a network model that can be 
quickly derived during the reconstruction phase of image 
stitching. This network model can complete the recon-
struction work in stitching the aligned free-view images. 
By using a new network structure based on ShuffleNet 
and an optimized loss function, the time required to 
stitch pictures can be greatly reduced at the expense of a 
small amount of success rate. However, the experimental 
results show that the error correction ability of the fast 
reconstruction network needs to be improved for data 
that has errors in the image alignment stage. At the same 
time, the performance of the network on close-range im-
ages is not satisfactory. To solve these problems, better 
image alignment models can be considered. Apart from 
this, replace the parameters of the perception function in 
the loss function to reduce the dependence on the image 
alignment model. In addition, the time spent on splicing 
can be further reduced through the model lightweight 
method in the deployment stage. 
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