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We propose a density-matrix-formalism based scheme to study polarization mode dispersion (PMD) monitoring and 
compensation in optical fiber communication systems. Compared to traditional monitoring and compensation schemes 
based on the PMD vector in the Stokes space, the scheme we proposed requires no auxiliary matrices and can be hand-
ily extended to any higher-dimensional modal space, which is advantageous in mode-division multiplexing (MDM) 
systems. A 28 GBaud polarization division multiplexing quadrature phase-shift keying (PDM-QPSK) coherent simu-
lation system is built to demonstrate that our scheme can implement the monitoring and compensation of 170 ps large 
differential-group-delay (DGD) that far exceeds the typical DGDs in practical optical communication systems. The 
results verify the effectiveness of the density-matrix-formalism based scheme in PMD monitoring and compensation, 
thus pave the way for further applications of the scheme in more general MDM optical communication systems. 
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Polarization division multiplexing (PDM) technology, as 
one of the most powerful means to enhance the transmis-
sion capacity of an optical fiber communication system, 
is accompanied by a series of polarization effects that 
might cause impairment to signals transmitted in the 
system. Polarization mode dispersion (PMD) is a promi-
nent modal effect that causes pulse broadening and dis-
tortion[1-3], thus leading to higher bit error rate (BER)[4,5], 
or even interruption of transmission in the system. 
Therefore, it is of great importance to analyze, monitor 
and compensate the PMD to improve signal transmission 
quality and system performance. 

Traditionally, studies of PMD monitoring and com-
pensation are based on the Stokes formalism[6-9]. In a 
single-mode fiber (SMF), there are actually two or-
thogonal polarization modes. For such a 2-dimensional 
modal space, the Stokes vector that characterizes the 
state of an electromagnetic field is a 3-dimensional real 
vector, which can be represented by a geometrical vector 
in the Poincare sphere. However, the formulation of 
Stokes formalism requires 3 auxiliary Pauli matrices that 
could complicate the analysis of PMD and related modal 
properties. For mode-division multiplexing (MDM) 

technology that employs multiple modes in a fiber to 
transmit signals (thus further enhancing the transmission 
capacity), the modal-space dimension N is greater than 2. 
When the Stokes formalism is extended to study mode 
dispersion in an N-dimensional (N>2) modal space, it 
not only loses the intuition advantage as in the PDM 
system, but also requires N2−1 N×N-dimensional auxil-
iary Gell-Mann matrices[10,11]. As N increases, the Stokes 
formalism gets more complicated and its direct connec-
tion to physical information less clear. To address such 
issues, recently the density-matrix formalism was pro-
posed as an alternative theoretical method to analyze the 
optical field transmission properties in MDM systems. 
By adopting the density operator to represent an elec-
tromagnetic field state, the density-matrix formalism 
does not require any auxiliar matrices and can be applied 
to modal spaces of arbitrary dimension N  2 in a unified 
manner[12]. Compared to the Stokes formalism, the den-
sity-matrix formalism has the evident advantages that its 
formulation and application are straightforward and 
physical information can be handily accessed. Even in 
the PDM (N=2) case, as we will show in the current pa-
per, the density-matrix formalism is elegant and can be 
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employed to study optical-signal monitoring and com-
pensation with a unified scheme.  

In view of the above advantages, we propose a PMD 
monitoring and compensation scheme by use of the den-
sity-matrix formalism in this paper. A PMD model fea-
turing the group-delay matrix Ω is constructed, with the 
independent entries of Ω as the key parameters for the 
monitoring and compensation. Based on the model, a 
28 Gbaud polarization division multiplexing quadrature 
phase-shift keying (PDM-QPSK) coherent simulation 
system is built to demonstrate high-accuracy, high-speed 
and high-efficiency monitoring and compensation for the 
PMD effects, with the simulation results excellently ver-
ifying the effectiveness and feasibility of our den-
sity-matrix-formalism based scheme in optical signal 
monitoring and compensation. The above den-
sity-matrix-formalism based scheme can be readily ex-
tended to any higher-dimensional modal space (i.e., 
MDM systems), with a high degree of flexibility and 
uniformity, thus reducing the complexity of digital signal 
processing (DSP) in compensation for performance im-
pairments of optical signals. Moreover, the scheme could 
also be highly suitable for further joint monitoring and 
compensation of PMD and polarization-dependent loss 
(PDL), or more generally, for modal dispersion and mode 
dependent loss in higher-dimensional (N>2) 
mode-division multiplexing systems. 

Before introducing the underlying principles of the 
PMD monitoring and compensation scheme based on the 
density-matrix formalism, we first give a brief review of 
the scheme that is based on the Stokes PMD vector τ (see 
below). Without rotation of state polarization, the evolu-
tion matrix can be written as[13] 

 
i

2
S-PMD e ,







τ·σ

U          (1) 
where ω is the frequency (relative to a reference fre-
quency ω0), the PMD vector τ=(τ1, τ2, τ3)T is a Stokes 
vector pointing in the direction of the slow principal state 
of polarization (PSP) with its length equal to the differ-
ential-group-delay (DGD)[14], and the elements in  
σ=(σ1, σ2, σ3)T are the auxiliary Pauli matrices. In the 
PMD monitoring and compensation, the evolution matrix 
US-PMD is determined by tracing the parameters τ1, τ2, τ3. 
Obviously, the existence of auxiliary Pauli matrices in 
the exponential function is inconvenient in such numeri-
cal algorithms. Although Eq.(1) can be cast into a form 
in which the auxiliary Pauli do not appear in the expo-
nential function[15], 

 S-PMD
j( )= cos sin ,
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with I being the 2×2 unit matrix, in any higher 
N-dimensional (N>2) modal space (e.g., an MDM sys-
tem of N modes), there would be a number of (N2−1) 
N×N auxiliary Gell-Mann matrices in the exponential 
function as in Eq.(1) and a reduction to the form as in 
Eq.(2) is no longer possible. Moreover, the physical 
meaning of τ is less clear for N>2. 

In our proposed scheme, the PMD is directly charac-
terized by the group-delay matrix Ω in the Jones space 
and the evolution matrix is expressed as 

i
DM-PMD ( ) e .  ΩU              (3) 

Ω is a Hermitian matrix whose eigenvectors and eigen-
values are the PSPs and the corresponding group delays. 
With the polarization-averaged group delay being re-
moved, Ω is traceless and has 3 independent real vari-
ables, 

a b c

b c a

    i 
 .

i   
Ω Ω Ω

Ω Ω Ω
 

    
Ω          (4) 

The three independent variables (Ωa, Ωb, Ωc) in Ω are 
taken as the key parameters in our scheme for PMD 
monitoring and compensation. We track the key parame-
ters iteratively by using the predicted value at the previ-
ous time and the measured value at the current time 
based on the recursive idea of the extended Kalman fil-
ter. Then the evolution matrix UDM-PMD is constructed 
from Ω according to Eq.(3), and the compensation of 
PMD is implemented as 

      -1
out DM-PMD inIFFT FFT ,t t   E U E  (5) 

where Ein (Eout) is the input (output) signal, and FFT 
(IFFT) represents the fast Fourier (inverse Fourier) 
transformation. 

In our scheme, the advantages of using Ω instead of τ 
to construct the evolution matrix are that it does not re-
quire any auxiliary matrices and the formula of UDM-PMD 
is identical for any modal-space dimension N. This 
would allow for the direct generalization of our scheme 
to treat modal dispersion in mode-division multiplexing 
systems and greatly simplify the parameter-tracking al-
gorithm for N>2. Even in the PMD case (N=2), our 
scheme is more theoretically more elegant with no auxil-
iary matrices required.   
  Given the advantages and potentials of our scheme, as 
the first step in its applications to more general MDM 
systems, we first employ the scheme to monitor and com-
pensate the PMD impairments on signals in a single mode 
fiber. We use MATLAB to build a 28 Gbaud PDM-QPSK 
coherent simulation system that consists of the transmitter, 
channel, receiver and DSP module, as shown in Fig.1. The 
transmitter generates and emits the PDM-QPSK optical 
signals, and the signals are transmitted in the fiber channel 
and received by the coherent receiver. Next, the DSP is 
applied for QPSK symbol recovery[16]. The parameters of 
the devices are set as follows. For the transmitter, the 
roll-off factor of the raised cosine filter is 0.1, and the 
center wavelength of the continuous wave (CW) laser is 
1 550 nm. For the channel, the length of fiber is 500 km, 
and the optical signals experience amplified spontaneous 
emission (ASE) noise (which would affect the optical sig-
nal to noise ratio (OSNR)). In the receiver, the signal is 
received coherently by a local oscillating laser source with 
a 1 550 nm central wavelength. In the DSP module, we 
adopt the scheme proposed above for PMD monitoring 
and compensation. The effectiveness of our scheme will 
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be observed in the tracking curves, BER with different 
DGDs, and the convergence speed. 

 
Polx: polarization-x; Poly: polarization-y; DAC: digital-analog 
converter; CW laser: continuous wave laser; PBS: polarization beam 
splitter; PBC: polarization beam combiner; IQM: IQ modulator; EDFA: 
erbium-doped fiber amplifier; LO: local oscillator; ADC: analog-digital 
converter; DSP: digital signal processing 

Fig.1 Overall block diagram of the 28 Gbaud PDM-QPSK 
coherent system 

 
To verify the accuracy of DGD monitoring by use of 

our scheme, we numerically simulate a PMD system 
with 80 ps DGD under 13.5 dB OSNR, and show the 
results in Figs.2 and 3. Fig.2 plots the tracking curves of 
the key parameters (Ωa, Ωb, Ωc). Note that, although the 
values of (Ωa, Ωb, Ωc) do not directly represent physical 
quantities in the familiar sense, they specifically deter-
mine the group-delay matrix Ω, whose eigenvalues in 
turn give the group delays of the principal states. Fig.3 
shows the dynamic tracing curve of the monitored DGD, 
which is calculated from the eigenvalues of Ω. In addi-
tion, we can see from the inset of Fig.3 that the tracing 
curve converges in about 50 iterations, and after that, the 
estimated DGD value (80 ps) essentially coincides with 
the actual one, thus manifesting excellent convergence 
performance. With (Ωa, Ωb, Ωc), the evolution matrix 
UDM-PMD(ω) is obtained and the signals are recovered 
using Eqs.(3) and (5), respectively.   

 

 
Fig.2 Curves of three key parameters in the tracked 
state vector at OSNR of 13.5 dB and DGD of 80 ps 

 
Fig.3 Convergence of iteration for OSNR of 13.5 dB 
and DGD of 80 ps 

 
To demonstrate that our scheme can realize compensa-

tion of large-scale DGDs with a small OSNR cost, in 
Fig.4, we plot BER vs. OSNR with various DGDs from 0 
to 160 ps. The results show that with a 7% forward error 
correction (FEC) threshold (BER=3.8×10−3) that can 
guarantee error-free signal transmission[17-19], the OSNR 
required for signal transmission is 12.5 dB. When the 
DGD is 40 ps (a typical value of DGD in, e.g., a 500-km 
long optical communication fiber[20]), our scheme re-
quires just a 0.31 dB OSNR penalty (total OSNR of 
12.81 dB) to complete the compensation of PMD. Fur-
thermore, in the extreme case of large DGD of 160 ps, 
only a 0.84 dB penalty OSNR (total OSNR of 13.34 dB) 
is required for the compensation. The inset in Fig.4 gives 
an example of the constellation diagrams before and after 
the recovery of QPSK signals at a 14.5 dB OSNR with a 
DGD of 40 ps. We see that the constellation points of the 
recovered signals can be perfectly distinguished, which 
indicates that the signals are well recovered.  

In order to estimate the maximum value of DGD that 
can be monitored and compensated by our scheme, we 
analyze the BER performance under different DGDs in a 
wide range from 20 ps to 180 ps, with the OSNR set at 
13.5 dB. The results are shown in Fig.5 as the BER vs. 
DGD curve. Also, as an example, the constellation dia-
grams are plotted for the DGD of 100 ps. One can see 
that with the 7% FEC threshold, the tolerance of DGD 
under the 13.5 dB OSNR can reach 170 ps, which is lar-
ger than the PMD estimation and compensation achieved 
in Refs.[21] and [22]. This further demonstrates that our 
density-matrix-formalism based scheme is effective and 
stable in the monitoring and compensation of large PMD 
under extreme conditions. 

In summary, we proposed a density-matrix-formalism 
based scheme for PMD monitoring and compensation. 
The scheme implements the monitoring and compensa-
tion of PMD by tracking the key parameters (Ωa, Ωb, Ωc) 
in the group delay Ω and reconstructing the evolution 
matrix UDM-PMD(ω) from Ω. We built a 28 Gbaud 
PDM-QPSK coherent simulation system to test the effec-
tiveness of our proposed scheme. The small OSNR penal 
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Fig.4 BER vs. OSNR for 28 Gbaud PDM-QPSK signals 
at various DGDs 
 

 

Fig.5 BER vs. DGD for 28 Gbaud PDM-QPSK signals 
at 13.5 dB OSNR  
 
ties and fast convergence in the monitoring and compen-
sation of DGDs over a wide range verify the excellent 
performance and stability of the scheme. Since the den-
sity-matrix-formalism based scheme can be handily ex-
tended to higher-dimensional modal spaces to study opti-
cal signal monitoring and compensation, our work in the 
current paper can serve as the first step in the potential 
applications of our scheme to more general MDM optical 
communications.  
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