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In response to the high complexity and low accuracy of current facial expression recognition networks, this paper pro-
poses an E-MobileNeXt network for facial expression recognition. E-MobileNeXt is built based on our proposed 
E-SandGlass block. In addition, we also improve the overall performance of the network through RepConv and SGE 
attention mechanisms. The experimental results show that the network model improves the expression recognition ac-
curacy by 6.5% and 7.15% in RAF-DB and CK+ datasets, respectively, while the parameter and floating-point opera-
tions decreased by 0.79 M and 4.2 M compared with MobileNeXt. 
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Face expression recognition[1] refers to the process of 
extracting and judging the subject's expression features 
from a given image or video sequence. In human com-
munication, facial expressions are the most direct and 
natural way of communication. In recent years, with the 
rapid development of artificial intelligence technology, 
the level of human-computer interaction has been con-
tinuously improved. Facial expressions are more and 
more widely used in real life, such as fatigue monitoring, 
human-computer interaction, classroom quality detec-
tion, depression treatment, etc. However, in practical 
applications, it is affected by real factors such as lighting, 
angle, and skin color, making expression recognition a 
challenging task in the field of artificial intelligence. 

With the continuous development of deep learning, 
expression recognition algorithms have gradually shown 
certain advantages in practice. Based on deep learning, 
expression recognition[2] is an end-to-end recognition 
process, that is, the facial expression features are first 
extracted through the feature extraction layer in the net-
work model, then the neural network is trained to learn 
discriminative expression features, and finally the classi-
fier discriminates and classifies the input facial expres-
sions according to the learned expression features. YU et 
al[3] combines multiple convolutional neural network 
(CNN) models by minimizing the log-likelihood loss and 
minimizing the hinge loss, which significantly improves 
the accuracy of expression recognition. JIANG et al[4] 
merged the Gabor convolution and channel-shift modules 
into the ResNet network to improve the expression rec-
ognition accuracy. However, most of the current main-
stream CNNs use complex deep neural network struc-

tures, which require large computational resources for 
training and are difficult to use in embedded devices. To 
solve the problem of limited scenarios of CNNs in the 
field of expression recognition, researchers have applied 
lightweight CNNs to expression recognition. BARROS 
et al[5] proposed the FaceChanel lightweight neural net-
work, which has 10 convolution layers including 4 pool-
ing layers. Among them, the last layer is the shunting 
suppression domain, and its function is to output the ex-
pression recognition effect. Inspired by ResNet and Mo-
bileNet, RODOLFO et al[6] proposed a residual network 
and depth-wise separable convolutional facial expression 
recognition network (ResMoNet). The network has great 
advantages in params, FLOPS, and main memory utiliza-
tion. 

The structure of the lightweight network model is rela-
tively simple, and the parameters and calculation amount 
are relatively small. However, the lightweight network is 
not deep enough, and there are problems such as weak 
expression feature extraction ability and low recognition 
accuracy. In order to achieve an expression recognition 
process that can maintain its original lightweight charac-
teristics and obtain a high accuracy rate in the process of 
realizing expression recognition, this paper improves the 
expression extraction of expression feature information 
for the original network based on the MobileNeXt[7] 
network. The main work involved in this paper is as fol-
lows. We use the RepConv block to reparameterize the 
convolutional layers in the network, improve the infer-
ence speed of the network, and increase the gradient in-
formation during feature extraction. We propose a new 
E-SandGlass block, which is composed of depth-wise 
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convolution, Ghost module, and Drop-Activation layer. 
This module improves the network's ability to extract 
facial expression features and significantly reduces the 
computational and parameter complexity of the network. 
We introduce the spatial group wise enhancement light-
weight attention mechanism to make the network focus 
more on regions with rich facial expression features, im-
proving the feature extraction ability of the network 
model for input images. 

The network structure is shown in Fig.1, where s is the 
stride. In this model, the input image is firstly passed 
through a 3×3 RepConv block, and the expression fea-

tures are filtered and merged by the RepConv block. 
Then the main framework of the network is stacked with 
E-SandGlass blocks. Among them, the E-SandGlass-A 
block is a structure that does not include shortcut con-
nections, used for preliminary extraction of facial ex-
pression features. The E-SandGlass-B block further ex-
tracts the expression features and weights the key infor-
mation in the face pictures through the SGE attention 
mechanism. E-SandGlass-C block is then mainly respon-
sible for tuning the feature dimension. Finally, the fea-
tures are extracted and classified by AdaptiveAvgPool 
layer with fully-connected layer. 

 

 
 

Fig.1 Improvements to the overall MobileNeXt network block diagram 
 

Traditional convolution consists of convolutional lay-
ers, batch normalization (BN) layers, and ReLU, which 
cannot extract rich gradient information when processing 
input images. Three independent operations increase the 
training time and inference time of the network. To im-
prove the inference speed after training, this paper 
reparameterizes the trained model. Due to the linear op-
eration of both convolution layer and BN layer, the con-
volution layer and BN layer are merged to reduce net-
work computation. Assuming the convolutional kernel is 
k, the convolutional layer can be represented as 
  Conv( ) ( ).x k x                            (1) 

Meanwhile, the BN layer can be represented as 

  BN( ) ,
x μx γ β

σ


                       (2) 

where σ is the standard deviation, γ and β for learnable 
magnification and bias, and μ is the mean. Merging the 
two steps can obtain 

  ( )BN(Conv( )) .
k x μx γ β

σ


                (3) 

The improved convolutional layer structure is shown in 
Fig.1, where RepConv block[8] reduces the computational 
complexity of convolutional operations by merging the 
convolutional layer with the BN layer. Additionally, intro-
duce identity and residual branches into convolutional 
layer. The RepConv block is a multi-branch parallel
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structure. Compared with the convolution block, Rep-
Conv block increases the horizontal branch on the basis 
of retaining the original vertical branch, which increases 
the gradient flow of the network. During training, all 
network layers in the RepConv block are transformed 
into 3×3 convolution through an op fusion strategy for 
network deployment and acceleration. 

In order to reduce the computational complexity of the 
network and enhance its generalization ability, this paper 
proposes an E-SandGlass block. The E-SandGlass block 
is constructed by depth-wise convolution, Ghost module, 
and Drop-Activation layer. The E-SandGlass block 
structure is shown in Tab.1. The Ghost module generates 
the expression feature map at a lower computational cost, 
and the Drop-Activation layer reduces the overfitting 
phenomenon of the network in feature extraction. 

 
Tab.1 E-SandGlass block structure  

Input dimension Method Output dimension 

Df ×Df ×M 
3×3 Dwise-conv, 

BN, Drop-Activation 
Df ×Df ×M 

Df ×Df ×M 1×1 Ghost module Df ×Df ×M/t 
Df ×Df ×M/t 1×1 Ghost module Df ×Df ×N 
Df ×Df ×N 3×3 Dwise, conv Df /s×Df /s×N 

  

When the feature information passes through the 
E-SandGlass block, it first passes through a 3×3 
depth-wise convolution, spatially encoding feature in-
formation. Then feature information through the BN and 
Drop-Activation layer, the activation function is ran-
domly eliminated in a manner similar to Dropout. En-
code the channel information of feature information 
through a bottleneck composed of two 1×1 Ghost mod-
ules. Finally, feature information is through 3×3 
depth-wise convolution and merging with shortcut con-
nections. 

Some of the feature maps output by the convolutional 
layer are highly similar, as shown in Fig.2(a). Boxes of 
the same color represent feature map repetitions.  

The traditional way assumes that there is redundancy 
in similar feature maps and avoids generating highly 
similar feature maps. However, GhostNet believes that 
the powerful feature extraction capabilities of CNNs are 
positively correlated with similar feature maps. GhostNet 
uses simple linear operations to generate feature maps, 
making this step more simple and efficient. The feature 
map processed by the Ghost module is shown in Fig.2(b). 

The Ghost module[9] structure is shown in Fig.3, which 
decomposes ordinary convolution into two parts. The 
first part uses ordinary convolution to generate some 
inherent feature maps X, and the second part uses cheap 
linear operations to enhance features and increase chan-
nels. 
  ,Y X f b                              (4) 
  ( ) 1 1, ,..., , ,..., ,

ij ij i
y Φ y i m j s         (5) 

where yi' is the ith original feature map in Y'. The above 

function Φij is a linear operation for generating the jth 
Ghost feature map (except the last one). Each original 
feature map yi' can generate one or more ghost feature 
maps { }

1

s
ij jy


, and finally Φis is suitable for preserving 

the identity map of the original feature map. 
In order to make our model have better generalization 

ability and accuracy, we replace the nonlinear activation 
function ReLU with the Drop-Activation[10] layer. 

The Drop-Activation layer acts on the nonlinear func-
tion, deactivating and activating the nonlinear function in 
a dropout-like manner during training. The dth nonlin-
earities ReLU in the operator f are kept with probability 
P or dropping them with probability (1−P). The output of 
the (l+1)th layer is thus 

(1 ) ( )
1l l l l lX P W x Pf W x


     

      (1 )( ).
l l

P Pf W x                    (6) 
 

 
 

Fig.2 Feature maps (a) before and (b) after ghost 
module processing 

 

 
Fig.3 Ghost module structure diagram 

 

The SGE module[11] generates attention maps by com-
bining the similarities between global and local features. 
In the feature map containing expression features, a 
complete expression feature is composed of multiple 
expression sub-features. The SGE module can process 
the sub-features of each group in parallel and use the 
similarity between the global features and local statistical 
features of each group as an attention guide to enhance 
the features, so as to obtain a spatially uniformly distrib-
uted semantic feature representation. The SGE has fewer 
parameters and computational effort, and the module can 
highlight multiple active regions with higher-order se-
mantics in expression recognition. These areas are not 
limited to a person's five senses, when people feel frus-
trated or angry, the folded areas formed by a furrowed 
brow are also noticed by the SGE module. 

The SGE structure diagram is shown in Fig.4. The 
SGE module groups feature maps, and each group oper-
ates in parallel. The feature map approximates the feature 
vector g of the group through global average pooling. 
Subsequently, the global feature g and local feature x 
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undergo dot product operations to generate correspond-
ing coefficients ci=g×xi for each spatial position, in order 
to compare their similarities. Then normalize the channel 
C in the spatial dimension and obtain the coefficient a by 
scaling and moving the normalized value to ensure that 

the normalization inserted in the network can represent 
the identity transformation. Finally, the normalized im-
portance coefficient a is spatially adjusted using the sig-
moid function to obtain the final enhanced feature vector 
by adjusting the original feature xi'. 

 

 
 

Fig.4 Illustration of the lightweight SGE module 
 

  The feature vector xi' can be represented as 
  xi'= xi·σ(ai) .                               (7) 

In order to test the performance of the model in ex-
pression recognition, training and testing were conducted 
in RAF-DB[12] and CK+[13] datasets, respectively. In the 
training process, the weights are randomly initialized and 
the NNI tool kit is used to count the parameters and cal-
culations. The sample dataset is shown in Fig.5. Training 
settings are shown in Tab.2. 

 

Fig.5 Samples from RAF-DB and CK+ datasets 
 

Tab.2 Settings in model training 

Data Batch-size Learn rate Optimizer Momentum 

RAF-DB 300 0.01 Adam 0.9 

CK+ 150 0.01 SGD 0.9 

To analyze the impact of the improvement measures 
proposed in this paper on accuracy and network com-
plexity, this section of the experiment compared and 
analyzed different combinations of improvement meas-
ures based on the MobileNeXt facial expression recogni-
tion model. The comparative experimental results of each 
module are shown in Tab.3. The RepConv block im-
proved the accuracy of our model on the RAF-DB and 
CK+ datasets by 1% and 0.69%, respectively. In terms of 
params and FLOPS, although RepConv block reduces 
the parameter quantity, the multi-branch structure also 
increases the floating-point computation of the network. 
E-SandGlass block improved accuracy by 5.3% and 
5.14% in datasets, respectively. At the same time, params 
and FLOPS also decreased, with params and FLOPS 
decreasing by 20.51% and 18.20%, respectively. 
E-SandGlass block generates feature maps at a lower 
cost through the Ghost module, reducing the complexity 
of the network. At the same time, the Drop-Activation 

layer improves the network's generalization ability for 
facial expression images. The SGE attention mechanism 
improved accuracy by 1.21% and 2.48% in datasets, re-
spectively. At the same time, due to the lightweight na-
ture of the SGE attention mechanism itself, the impact on 
params and FLOPS is relatively small. When the three 
improvement measures were simultaneously applied to 
the basic network, the accuracy increased by 6.5% and 
7.15% in datasets, while params and FLOPS decreased 
by 0.79 M and 4.2 M, respectively. In summary, the ad-
dition of each of the three modules can optimize network 
performance to varying degrees. 

 

Tab.3 Comparison of ablation experimental results 

RepConv E-SandGlass SGE 
RAF-DB 

(%) 

CK+ 

(%) 

Params 

(M) 

FLOPS 

(M) 

   75.00 89.82 3.85 23.07 

√   76.00 90.51 3.60 23.90 

 √  80.30 94.96 3.05 18.76 

  √ 76.21 92.30 3.93 23.15 

√ √ √ 81.5 96.97 3.06 18.87 

 

The visual heat map of feature extraction for each at-
tention mechanism is shown in Fig.6. It can be seen that 
due to the relatively large proportion of the background 
area of the face image, model cannot accurately focus the 
attention to the area with obvious information. 

The model in this paper can better lock the key area on 
the face part, and the key area generated by the attention 
mechanism can better cover the relevant action units of 
the facial expression. When laughing, SGE focused on 
the open mouth area. During anger, SGE will focus on 
areas of the face that have folds (such as frowning 
brows). When calm, there are no obvious areas of change 
in the expression, SGE focuses on the entire face area. 
When startled, SGE focuses on the wide-open eyes and 
open mouth area. For the case of curly hair in the avatar 
image, due to the rich texture features in the large curly 
hair area, the SGE model mistaken the hair area as a key 
area.
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Fig.6 Attention heat maps of different attention 
mechanisms 

 
To further evaluate the performance of our model, we 

compare our model with current mainstream classifica-
tion networks. In order to ensure fair results, all network 
models are retrained on this platform, and all network 
models do not use the method of loading pre-training. 
The experimental results are shown in Tab.4 and Tab.5. 

 

Tab.4 Performance of different network models in 
datasets 

Model RAF-DB (%) CK+ (%) 
BOT-S1-50 78.15 93.45 

DeiT-2G 73.41 90.96 
MobileViT 77.21 94.32 

GhostNet V2 74.76 93.16 
MobileNet V3 76.50 88.87 

Our 81.50 96.97 
 

Tab.5 Params and FLOPS of different network models 

Model Params (M) FLOPS (M) 
BOT-S1-50 18.75 3 971.54 

DeiT-2G 9.7 2 048 
MobileViT 5.01 1 095.31 

GhostNet V2 4.82 165.78 
MobileNet V3 4.18 14.23 

Our 3.06 18. 87 
 

This section compares the proposed method with mul-
tiple vision transformer (ViT) variants and CNNs. 
Among them, BOT-S1-50, DeiT-2G, and MobileViT are 
variant networks of ViT. GhostNet V2 and MobileNet V3 
are lightweight CNNs. Compared with current main-
stream classification networks, our network has signifi-
cant advantages in accuracy and computational complex-
ity. The accuracy of RAF-DB and CK+ datasets is higher 
than that of ViT variant networks and CNNs. Compared 
with ViT variant networks, E-SandGlass block reduces 
the loss of feature information transmitted in the network 

by transmitting feature information in higher dimensions. 
In terms of model complexity, although the self-attention 
mechanism of ViT networks can capture global features 
of facial expression images, it also brings a huge compu-
tational burden to the network. Therefore, the parameter 
quantity and computational complexity of the ViT net-
work are much greater than our network. Compared with 
CNNs, the SGE attention mechanism improves the net-
work's ability to extract facial expression features. The 
Ghost module reduces the amount of network parameters 
and computation. The above improvements enable the 
network in this article to have higher accuracy and lower 
model complexity. 

To further compare the performance of the model in 
this paper, we compare it with the expression recognition 
data reported in other recent literature, as shown in Tab.6. 
NIGAM et al[14] combined discrete wavelet transform 
with HOG features to achieve recognition of expression 
features by transforming spatial domain features to fre-
quency domain. LIU et al[15] proposed a new enhanced 
deep belief network to learn and select effective facial 
appearance features in a unified recurrent architecture to 
obtain better expression recognition results. ZHENG et 
al[16] proposed an oriented attention pseudo-Siamese 
network which consists of two parts, the maintenance 
branch and the attention branch, to compensate the limi-
tation of insufficient local information through the atten-
tion branch, and thus improve the accuracy of expression 
recognition. HUA et al[17] proposed a CNN with dense 
backward attention to achieve high-performance expres-
sion recognition using channel attention aggregation on 
multi-level features in the backbone network. CHEN et 
al[18] proposed a densely connected CNN with hierarchi-
cal spatial attention to adaptively localize salient regions 
through a spatial attention mechanism. GHOSH et al[19] 
used CapsuleNet as the basis for predicting facial expres-
sions using various information such as face expression 
information and scene information. FAN et al[20] pro-
posed the FaceNet2ExpNet network, which divides the 
network training into a pre-training phase and a refine-
ment phase. ZENG et al[21] merge multiple datasets to 
improve the learning ability of the network for large 
datasets through an end-to-end LTNet scheme. In terms 
of expression recognition accuracy, the network in this 
paper is 6.97% higher than the W-HOG-based method in 
the CK+ dataset, reflecting that deep learning-based 
methods have better performance than traditional meth-
ods in expression recognition. It is 0.27% higher than 
DBN in the CK+ dataset, indicating that the CNN has 
better recognition ability than the deep belief network. 
Compared with other approaches using CNNs, the net-
work in this paper achieves the highest value in all ex-
perimental results. 

Tab.7 shows the confusion functions of the model in 
the RAF-DB dataset. The recognition rate of our network 
exceeds 75% for all expression categories, indicating that 
our network can effectively recognize and classify facial 
expressions. Our network has the highest recognition 
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accuracy for both happy and natural expressions, while 
the recognition accuracy for disgust is slightly poor. 
There may be two reasons for this. Firstly, disgust and 
anger are similar in facial expression, such as frowning. 
The second reason is that the dataset lacks aversion to 
images, resulting in insufficient model training. 

Tab.8 shows the confusion functions of the model in 
the CK+ dataset here. From the table, it can be seen that 
our network has good facial expression recognition per-
formance in the CK+ dataset. 

 

Tab.6 Comparison of ablation experimental results 
between CK+ and RAF-DB datasets 

Method CK+ RAF-DB 

W_HOG[14] 90.00 - 
DBN[15] 96.7 - 

Siamese network[16] 94.7 75.4 
CNN[17] - 79.37 

DenseNet[18] 95.71 76.95 
CapsuleNet[19] - 77.48 

FaceNet2ExpNet[20] 93.1 76.7 
LTNet[21] 93.7 60.4 

Our 96.97 81.5 

 
Tab.7 Confusion function of RAF-DB dataset 

 An Di Fe Ha Sa Su Ne 
An 0.78 0.11 0.00 0.01 0.01 0.04 0.05 
Di 0.00 0.75 0.13 0.00 0.02 0.03 0.07 
Fe 0.10 0.06 0.80 0.00 0.04 0.00 0.03 
Ha 0.01 0.01 0.00 0.89 0.02 0.02 0.05 
Sa 0.02 0.05 0.00 0.04 0.81 0.01 0.07 
Su 0.03 0.02 0.03 0.03 0.04 0.79 0.06 
Ne 0.01 0.05 0.00 0.01 0.02 0.02 0.89 

 
Tab.8 Confusion function of CK+ dataset 

 An Di Fe Ha Sa Su Ne 
An 1.00 0.00 0.00 0.00 0.00 0.00 0.00 
Di 0.00 0.99 0.00 0.00 0.00 0.00 0.01 
Fe 0.00 0.00 1.00 0.00 0.00 0.00 0.00 
Ha 0.00 0.00 0.00 1.00 0.0 0.00 0.00 
Sa 0.00 0.00 0.00 0.00 1.00 0.00 0.00 
Su 0.00 0.00 0.00 0.00 0.00 1.00 0.00 
Ne 0.01 0.00 0.00 0.01 0.00 0.00 0.98 

 

Based on the improved model, the design of the PC 
version of the facial expression recognition system is 
completed, which can quickly identify one or more facial 
expressions in pictures or videos. By inputting a speci-
fied picture, facial expression recognition is realized, and 
the recognition effect is shown in Fig.7. The identifica-
tion and statistical results of this system can assist spe-
cific application scenarios, such as customer preference 
analysis, classroom effect monitoring, and infant recipe 
analysis.  

 
 

Fig.7 Facial expression recognition effects of the 
E-MobileNeXt  

 

To address the problem that the current expression 
recognition model based on CNN has too many parame-
ters and the feature extraction ability of lightweight neu-
ral network is insufficient, an improved network model 
based on MobileNeXt is proposed. We have proposed 
RepConv block. This paper replaces the standard convo-
lution of MobileNeXt header with RepConv block. We 
utilize the multi-branch structure and reparameterization 
of RepConv block to reduce the number of network pa-
rameters and increase the gradient information during 
feature extraction. In addition, we constructed the 
E-SandGlass block using depth-wise convolution, Ghost 
module, and Drop-Activation layer. Compared with 
SandGlass block, E-SandGlass block has better generali-
zation ability and lightweight. Finally, we introduced the 
SGE attention mechanism to improve the network's abil-
ity to extract facial expression features. The experimental 
results show that the improved model in this paper main-
tains the lightweight advantage of the model while effec-
tively improving the expression recognition accuracy 
compared with the benchmark model and various other 
deep networks. 
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