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Remote sensing images are taken at high altitude from above, with complex spatial scenes of images and a large num-
ber of target types. The detection of image targets on large scale remote sensing images suffers from the problem of 
small target size and target density. This paper proposes an improved model for remote sensing image detection based 
on you only look once version 7 (YOLOv7). First, the small-scale detection layer is added to reacquire tracking frames 
to improve the network's recognition ability of small-scale targets, and then Bottleneck Transformers are fused in the 
backbone to make full use of the convolutional neural network (CNN)+Transformer architecture to enhance the feature 
extraction ability of the network. After that, the convolutional block attention module (CBAM) mechanism is added in 
the head to improve the model's ability of small-scale target. Finally, the non-maximum suppressed (NMS) of 
YOLOv7 algorithm is changed to distance intersection over union-non maximum suppression (DIOU-NMS) to im-
prove the detection ability of overlapping targets in the network. The results show that the method in this paper can 
improve the detection rate of small-scale targets in remote sensing images and effectively solve the problem of high 
overlap and is tested on the NWPU-VHR10 and DOTA1.0 datasets, and the accuracy of the improved model is im-
proved by 6.3% and 4.2%, respectively, compared with the standard YOLOv7 algorithm. 
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With the rapid development of the satellite sensor tech-
nology, high spatial resolution remote sensing data have 
attracted extensive attention in military and civilian ap-
plications[1]. Satellite images taken on the earth’s surface 
are analyzed to identify the spatial and temporal changes 
that have occurred naturally or man-made. Real-time 
prediction of change provides an understanding related to 
the land cover[2], environmental changes, habitat frag-
mentation, coastal alteration, urban sprawl, etc. There-
fore, remote sensing image target detection and recogni-
tion has important practical value.   

With the rapid development of deep learning[3], more 
powerful tools capable of semantic learning, advanced 
and deeper features have been introduced to solve the 
problems in traditional architecture. The target detection 
algorithm based on deep learning[4], with its advantages 
of flexible structure, automatic feature extraction and 
powerful data processing capability, has many advan-
tages, such as high performance, wide practical applica-
tion scenarios, convenient and simple use. There are two 
main types of deep learning based target detection algo-
rithms, one is the two-stage algorithm represented by fast 
region-based convolutional neural network (fast 
R-CNN)[5], faster R-CNN[6], etc. This type of method 
possesses high detection accuracy, but the detection 

speed is slow. Single-stage methods are regression-based 
detection algorithms that employ end-to-end target de-
tection methods, such as single shot multibox detector 
(SSD)[7], you only look once (YOLO)[8-10], etc. These 
algorithms do target detection directly in the feature ex-
traction layer without generating candidate regions, 
which greatly saves detection time and has no significant 
disadvantage in detection accuracy.    

With the continuous pursuit of small target detection 
accuracy and building a deeper network, researchers 
have done a lot of research. Ref.[11] proposed an adap-
tive learning method to select the best data enhancement 
strategy to obtain a certain performance improvement in 
small target detection. Ref.[12] proposed a deconvolu-
tional object detection network (DODN) model by opti-
mizing the detection frame filtering mechanism, which 
replaces the anchored frame mechanism by building a 
two-level deconvolutional network, and then generates 
the region of interest by region proposal network (RPN). 
The detection accuracy of the model is improved. 
Ref.[13] proposed a learning rotation-invariant convolu-
tional neural network (RICNN), which introduces and 
learns new rotation-invariant structures to improve the 
detection performance based on the existing CNN struc-
tures. Ref.[14] proposed a scale-matching strategy to 
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crop the objects according to the target size, reduce the 
scale gap between different objects, and avoid losing 
small target information when downsampling the images. 
Ref.[15] proposed a novel object detection method based 
on shallow feature fusion and semantic information 
augmentation (FFSI). High-level semantic information is 
injected into low-level features to guide the enhancement 
of specific detail information. Ref.[16] proposed an ex-
tended feature pyramid network, which uses additional 
high-resolution pyramids specifically for small target 
detection.   

In this paper, we propose an improved algorithm based 
on the you only look once version 7 (YOLOv7) algo-
rithm applied to remote sensing image datasets for target 
detection. Because the YOLOv7 algorithm has poor de-
tection effect on small-scale targets, the multi-scale 
learning ability of the network is improved by adding a 
small-scale detection layer. Then we integrate Bottleneck 
Transformers to strengthen the ability of global modeling 
and long-distance modeling. After that, convolutional 
block attention module (CBAM) mechanism is intro-
duced to improve the model's ability to capture target 
features and improve the model's recognition perform-
ance for small targets. Finally, change weighted 
non-maximum suppressed (NMS) to distance intersec-
tion over union-non maximum suppression 
(DIOU-NMS), to solve the problem of low accuracy of 

the standard YOLOv7 algorithm for overlapping target 
detection. This experimental result shows that the im-
proved YOLOv7 algorithm not only improves the detec-
tion performance of small and medium scales and dense 
categories in remote sensing images, but also increases 
the detection accuracy of remote sensing datasets.   

The author team of YOLOv4[17] proposed YOLOv7[18]. 
The YOLOv7 network structure is composed of input, 
backbone network and neck network. The input module 
preprocesses the input image through Mosaic data en-
hancement and adaptive anchor frame calculation. The 
backbone network module mainly uses three structures: 
CBS, MP and ELAN, and the structure is shown in Fig.1. 
The ELAN structure continuously enhances the learning 
ability of the network by controlling the shortest and 
longest gradient path without destroying the original 
gradient path, so that the deeper network can effectively 
learn and converge. The neck module adopts the charac-
teristic pyramid network FPN structure and the path ag-
gregation network PAN structure. PAFPN structure can 
fuse the output multi-scale feature layer, so that the 
small-scale feature layer has rich semantic information, 
while the large-scale feature has more abundant feature 
information. For P3, P4 and P5 output by the neck mod-
ule, the prediction module adjusts the number of chan-
nels through RepConv, and finally uses 1×1 convolution 
to predict the objectivity, class and box. 

 

 
Fig.1 Main modules of YOLOv7 network 

Due to the small size of the small target samples and 
YOLOv7's lower sample multiplier is larger, it is more 
difficult to learn the feature information of the small tar-
get in the deeper feature map, so the original model of 
YOLOv7 has poor detection ability for small targets. The 
input image size of the original model is 640×640, and 
the minimum detection scale is 80×80. The sensory field 

of each grid is 8×8, so if the height and width of the tar-
get in the original image are less than 8 pixels, it is diffi-
cult for the original network to recognize the feature in-
formation of the target in the grid. For this reason, this 
paper proposes to add a small-scale detection layer to the 
PAN structure to solve the above problem by adding a 
160×160 detection scale on top of the previous 
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three-scale detection layer to become a four-scale detec-
tion. The main process of adding a small-scale detection 
layer is as follows: the 80×80 feature map is upsampled 
to expand the feature map to 160×160, concat fused with 
the feature map of the second layer in the backbone net-
work, and a set of anchors is added by the K-mean clus-
tering algorithm as a way to perform small-scale detec-
tion at a larger feature map. Although the amount of 
computation is increased, the accuracy of small target 
detection in remote sensing images is really improved.  

BotNet[19] is an exploration of the combination of Revo-

lution+Transformer by researchers from Berkeley and 
Google. Using CNN+Transformer, we propose a Bottle-
neck Transformer to replace ResNet Bottleneck. That is, 
only the last three Bottleneck blocks in the ResNet frame-
work use multi head self attention (MHSA) to replace 3×3 
spatial convolutions. The MHSA layer includes relative 
position coding and MHSA model, which can enable the 
network model to learn more features and details of the 
image and improve the network performance, and 84.7% 
accuracy was achieved in ImageNet. The network structure 
of Bottleneck Transformer is shown in Fig.2.   

 

 
Fig.2 Bottleneck Transformer structure diagram 

Bottleneck Transformer replaces 3 with MHSA×3 
convolution, 3 in the first Bottleneck×3 convolutional 
stride=2, but MHSA module does not support stride op-
eration, so BotNet adopts 2×2 average pooling for down 
sampling.  

The purpose of adding attention mechanism is to tell 
the model which position and content to focus on. 
Through the difference in the way and position of atten-
tion weight, attention mechanism can be divided into 
three types: spatial domain attention, channel domain 
attention and mixed domain attention. In this experiment, 
the method of CBAM in the hybrid domain attention 
method[20] is used. It is an attention mechanism module 
that provides attention maps from the channel and spatial 
dimensions in order, mainly divided into channel atten-
tion module and spatial attention module, which can 
make the features extracted from the model more refined 
and effectively improve the classification effect of the 
model. 

The CBAM schematic is shown in Fig.3, which in-
ferred the attention weights from the intermediate feature 
map along the 2 dimensions of space and channel, and 
then multiplied the weights with the original feature map 
to adjust the features adaptively, so as to achieve the 
purpose of focusing on the target features. At the same 
time, CBAM is a lightweight general-purpose module 
that can be integrated into CNNs at a small cost and can 
be trained end-to-end together with the basic CNN.  

 
Fig.3 CBAM attention mechanism structure diagram 

The channel attention module focuses on the mean-
ingful information in the input image and can compress 
the spatial dimension while keeping the channel dimen-
sion unchanged. The structure of the channel attention 
module is shown in Fig.4, where the feature map 

( )C H WF F R   is input at the input side, and after aver-
age pooling and maximum pooling, the feature map of 
size C H W  is transformed into 1 1C   size, then 
they are fed into the neural network MLP, where the 
number of neurons in the first layer is C/r, r is the de-
scent rate, the activation function is Relu, and the num-
ber of neurons in the second layer is C. The results are 
summed up after completion, then the new features are 
scaled by a Sigmoid function MC. The weight coeffi-
cients are calculated as shown in Eq.(1), and multiplied 
by the initial input to obtain the new scaled features.  

1 0 avg 1 0 max( ) ( ( ( )) ( ( ))),C C
CM F W W F W W F         (1) 

where σ denotes the Sigmoid function, avg denotes the 
global average pooling, max denotes the maximum 

pooling, 0

CC
rW R


 , 1

CC
rW R


 , avg

CF denotes the average 
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pooling feature of size 1 1 ,C  and max
CF  denotes the 

maximum pooling feature of size1 1 C  . 

 
Fig.4 Channel attention module structure 

   
The structure of the spatial attention module is shown 

in Fig.5. The results obtained in the previous step are 
divided into two channel descriptions of size 
1 H W  by maximum pooling and average pooling, 
and then the tensor is stacked together by the concatena-
tion operation, and then the weight coefficients MS are 
obtained by the convolution operation and a Sigmoid. 
The weight coefficients are calculated as shown in 
Eq.(2), and the newscaled features are obtained by mul-
tiplying the weight coefficients by the input of the pre-
vious step, which completes the spatial attention opera-
tion. 

 

 
Fig.5 Spatial attention module structure 

  
7 7

avg max( ) ( ([ ; ])),S S
SM F σ f F F                 (2) 

where 7 7f  denotes a 7   convolution, avg
SF denotes av-

erage pooling feature of size 1 ,H W  and max
SF denotes 

maximum pooling feature, also of size1 .H W   
In the prediction phase of target detection, multiple 

prediction frames are generated, where multiple predic-
tion frames overlap significantly, and multiple overlaps 
may all revolve around the same target, which requires 
the NMS function to continuously IOU the highest scor-
ing frame with the other frames, and then remove the 
frames whose IOU values exceed a given threshold. In 
this process, a large number of anchor frames with low 
scores and high overlap will be suppressed, resulting in 
missing detection and affecting the detection accuracy. 
IOU_Loss has two serious problems: when two coordi-
nate frames do not intersect, IOU is 0, IOU_Loss is not 
conductive; if two cases of the same IOU occur, 
IOU_Loss function does not distinguish the two. To ad-
dress this problem, subsequent research has produced a 
series of algorithm improvements, proposing a method of 
NMS filtering for location priority, which adds IOU pre-
diction branches to the network, but tends to increase the 
computational effort. Therefore, this paper uses the im-
proved DIOU-NMS[21] as the evaluation criterion of 

NMS to improve the missed detection problem in the 
obscured scene. DIOU_Loss considers both the distance 
between the center points of two prediction boxes and 
the area between prediction boxes. DIOU-NMS is shown 
in Eqs.(3) and (4). 

  
2 8 2DIOU IOU ( ( , )) .tρ b b c                       (3) 

The DIOU is based on IOU considering the distance 
between the two bounding boxes PB and GT, IOU is the 
intersection ratio of PB and GT. b and b8t

 denote the 
center point of PB and GT. ρ2(b, b8t) denotes the Euclid-
ean distance between the center point of PB and GT. c 
denotes the shortest diagonal length of the minimum 
bounding box of PB and GT. 

  

, DIOU( , )
.

0, DIOU( , )
i i

i
i

s M B ε
s

M B ε


 


                   (4) 

When the M with the highest prediction score and the 
prediction frame Bi are less than the DIOU 
non-maximum threshold ε, they are removed. When the 
distance is too far greater than the set threshold value, it 
is considered that another target is detected, which is 
helpful to solve the problem of missing detection when 
the target occludes each other.  

The improved YOLOv7 network model is shown in 
Fig.6. 

The experiment is based on the PyTorch framework, 
using graphics processing unit (GPU) for training, and 
the specific configuration of the experimental environ-
ment is shown in Tab.1. 

Since the size of the detection target in the custom 
datasets differs from the public datasets, the computa-
tional idea of auto learning bounding box anchors is used 
in YOLOv7 in this experiment, and the K-means clus-
tering algorithm is used to automatically learn from the 
marked target frame to obtain the appropriate anchor 
frame, which improves the recall rate of the model, 
which is obtained from the training data automatically. 
The standard YOLOv7 has 9 anchor frames based on the 
COCO datasets, namely (12, 16), (19, 36), (40, 28), (36, 
75), (76, 55), (72, 146), (142, 110), (192, 243), and (459, 
401). For example, in this paper, in the DOTA1.0 data-
sets, anchor frames are reassigned according to the de-
tection layer scale, and statistical anchor frames are as-
signed as (21, 26), (28, 22), (24, 46), (41, 37), (57, 58), 
(79, 106), (148, 123), (163, 291), and (336, 315).  

For small targets with obscure boundaries, three an-
chor frame sizes of (10, 11), (25, 12) and (13, 23) were 
used to increase the detection of small targets in remote 
sensing images to achieve smaller classes. The mosaic 
data enhancement method is used in the training process to 
enrich the sample background and enhance the robustness 
of the network model. The sample is positive when the 
IOU of anchor box and real box is >0.45, otherwise it is 
negative. The batch size is set to 32, the initial learning 
rate is 0.01, and the epochs are set to 300. After consider-
ing the category richness, annotation quality and the num-
ber of small targets, the DOTA1.0 datasets and the 
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NWPU-VHR10  datasets  are  used  as  the  base  datasets to train the network model.  
 

 
Fig.6 Improved YOLOv7 network structure diagram 

Tab.1 Specific configuration of the experimental envi-
ronment 

Projects Environment 

Operating system Windows 10 (x64) 

CPU IntelXeonE52680v4@2.40 GHz 

GPU NVIDIA Tesla P40 24 GB 

PyTorch 10.1 

 
When the external environmental conditions in the 

image change, such as changes in information, they can 
have an impact on the detection results. Target detection 
relies on the pixel values and features in the image to 
recognize and analyze the object, and when the external 
environmental conditions change, it may affect the visual 
information in the image, which in turn affects the detec-
tion results. In order to enhance the robustness of the 
model, various transformations are used to expand the 
training data during the training phase, such as randomly 
adjusting the brightness, contrast, and illumination, so 
that the model can better adapt to different environ-
mental conditions. In this paper, splicing, cropping and 
scaling are used to expand the training data of remote 
sensing image datasets.  

Fig.7 shows that data enhancement methods, such as 
mirroring, inverse color, scaling and adding noise, were 
used to expand the 650 data sets to 980, and randomly 
assigned to the training, test and validation sets in the 
ratio of 6: 2: 2.  

The DOTA1.0 dataset contains 1 764 optical remote 
sensing images with label information, and the target 
categories are very representative. The varying image 
sizes within the datasets make it difficult to train the in-
put network directly, so the DOTA1.0 dataset needs to be 
sliced and diced. Since the cut often leads to missing 

target information in the edge part of the image after the 
cut, a certain overlap region needs to be set. The data is 
expanded to 20 000 images by data processing, and the 
training and validation sets are assigned in a 3: 1 ratio. 

The mean average accuracy (mAP) was used in this 
experiment to evaluate the performance of the model as 
shown in Eq.(5) and Eq.(6). 

 

 
Fig.7 Image processing comparison chart 

 

  
precision ,TP

TP FP



                        (5) 

  
recall ,TP

TP FN


                           
(6) 

where TP denotes true case, FP denotes false positive 
case, and FN denotes false negative case. When the IOU 
between the real frame and the anchor frame of a single 
object is greater than 0.5, the anchor frame is defined as 
TP, otherwise it is defined as FP. The precision and re-
call are calculated according to the formula, and the pre-
cision curve is plotted, the step size is set to 0.1, and the 
precision value corresponding to recall of [0, 0.1, 0.2, ..., 
1] is taken. The average of these precision values is AP, 
and the AP of each category is summed and averaged to 
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obtain mAP. 
In this paper, we perform comparison experiments on 

the NWPU-VHR10 dataset using RICNN, collection of 
part detectors (COPD)[22], rotation-insensitive and con-
text-augmented object detection (RI-CAO)[23], and 
YOLOv5 with the standard YOLOv7 and improved 
YOLOv7 algorithms, while on the DOTA1.0 dataset 
using detection for small, cluttered and rotated objects 
(SCRDet)[24], feature-attentioned object detection 
(FADet)[25], RSDet[26], and YOLOv5 with the standard 

YOLOv7 and the improved YOLOv7 algorithm for 
comparison experiments. From the experimental results 
data in Tab.2 and Tab.3, we can see that the final mAP of 
the algorithm in this paper for NWPU-VHR10 dataset 
and DOTA1.0 dataset is 95.6% and 75.2%, respectively, 
which has good detection accuracy than other models as 
well. The improved YOLOv7 model has better detection 
performance than the standard YOLOv7 model on 
NWPU-VHR10 dataset and DOTA1.0 dataset, with an 
increase of 6.3% and 4.2%, respectively. 

Tab.2 Accuracy table of training results of different algorithms on the data-enhanced NWPU-VHR10 dataset (%) 

Method  RICNN COPD RI-CAO YOLOv5 YOLOv7 
Improved  
YOLOv7 

 PL 83.4 62.2 99.7 99.4 99.5 99.5 
 SH 77.3 69.3 90.8 90.9 90.1 91.2 
 ST 85.2 64.5 90.6 75.5 73.4 94.3 
 BD 88.1 82.1 92.9 99.3 98.9 99.0 

Class TC 40.8 34.1 90.3 94.1 93.2 97.5 
 BC 58.5 35.2 80.1 87.8 86.7 93.2 
 GTF 86.7 84.2 90.8 98.6 97.3 99.5 
 HA 68.6 56.3 80.2 97.8 96.6 98.4 
 BR 61.5 16.4 68.5 83.7 81.5 91.2 
 VE 71.1 44.2 87.1 76.6 75.8 91.8 

mAP (%)  72.1 54.9 87.1 90.4 89.3 95.6 

Tab.3 Accuracy table of training results of different algorithms on DOAT1.0 dataset (%) 
 

Method  SCRDet FADet RSDet YOLOv5 YOLOv7 
Improved  
YOLOv7 

 SV 68.3 72.6 69.6 62.6 65.3 76.4 

 LV 60.3 68.2 70.1 63.9 86.8 89.9 

 PL 89.8 90.2 89.8 68.2 92.5 95.3 

 ST 86.8 84.7 83.4 72.4 75.1 82.8 

 SH 72.4 79.6 70.3 58.8 88.6 89.5 

 HA 66.2 74.2 65.6 64.3 83.8 86.9 

 GTF 68.3 76.4 65.2 60.7 67.2 69.8 

Class SBF 65.0 53.4 62.5 49.1 64.7 68.7 

 TC 90.8 90.8 90.5 74.1 94.2 95.2 

 SP 68.2 69.7 67.2 59.9 61.4 64.9 

 BD 80.6 79.6 82.9 67.3 73.1 74.2 

 RA 66.6 65.4 65.9 39.5 50.8 58.4 

 BC 87.9 82.4 85.7 65.7 68.8 71.1 

 BR 52.0 45.5 48.6 46.9 45.2 49.4 

 HC 65.2 63.9 68.2 47.7 47.5 54.4 

mAP (%)  72.5 73.1 72.4 60.1 71.0 75.2 

 

But the detection effect of different categories varies 
greatly due to the very unbalanced target types in the 
DOTA1.0 dataset and the large differences in target size 
morphology. The detection effect for small vehicles (SV) 
is the most significant, while the detection effect for 
categories with more common shapes like bridges (BR) 

is not ideal, indicating that the huge differences in the 
datasets can lead to different detection effects between 
categories. 

From Fig.8, we can see the improved training curve of 
YOLOv7, where Box is presumed to be the mean value 
of the DIOU_Loss function, the smaller the Box, the 
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more accurate; Objectness is the mean value of the target 
detection loss, the smaller the target detection, the more 
accurate; Classification is the mean value of the classifi-
cation loss, the smaller the classification, the more accu-
rate; val Box is the validation set bounding box loss; val 
Objectnes is the mean value of target detection loss in 
the validation set; val Classification is the mean value of 
classification loss in the validation set; mAP@0.5: 0.95 
denotes the average mAP at different IOU thresholds; 
mAP@0.5 denotes the average mAP at thresholds greater 
than 0.5; the main point is to observe the fluctuation of 
precision and recall. When the fluctuation is not very big, 
the training effect is better. 

 
Fig.8 Improved YOLOv7 network model training curve 

 
From Fig.9,  the  improved  algorithm  based  on  

YOLOv7 in this paper can better identify small cars in-
remote sensing images, has significantly improved the 
overall target detection accuracy, and has good detection 
of dense targets. 

 
Fig.9 Comparison of (a) the standard YOLOv7 algo-
rithm and (b) the improved YOLOv7 algorithm 

 
In order to verify the four improvements proposed in 

this paper for YOLOv7 methods, we add a small-scale 
detection layer (A-YOLOv7), fuse Bottleneck Trans-
formers (B-YOLOv7), the attention module CBAM 
(C-YOLOv7), and use DIOU-NMS (D-YOLOv7) on the 
standard YOLOv7 model in order to judge the effective-
ness of each improvement point, using the data-enhanced 
NWPU-VHR10 dataset, while keeping the same experi-
mental configuration. The experimental results are 
shown in Tab.4. 

 

Tab.4 Ablation experiments on the NWPU-VHR10 dataset based on the improved YOLOv7 algorithm (%) 

Method  A-YOLOv7 B-YOLOv7 C-YOLOv7 D-YOLOv7 
YOLOv7 

-tiny 
YOLOv7 

 PL 99.4 99.4 99.6 99.5 99.4 99.5 

 SH 82.9 83.5 86.0 83.7 83.9 90.1 
 ST 99.4 99.4 99.5 99.0 98.2 73.4 
 BD 99.1 99.0 98.6 99.1 98.5 98.9 

Class TC 94.8 94.9 95.1 97.0 96.2 93.2 
 BC 94.2 80.7 94.7 92.8 48.1 86.7 
 GTF 97.2 99.5 97.3 93.7 96.2 97.3 
 HA 96.7 97.6 96.9 93.9 97.0 96.6 
 BR 90.5 92.0 92.8 85.1 91.7 81.5 
 VE 86.4 88.6 87.6 84.9 77.7 75.8 

mAP (%)  94.1 93.5 94.8 92.9 88.7 89.3 

 
The analysis of the results shows that adding a 

small-scale detection layer, fusing Bottleneck Transform-
ers, introducing the attention mechanism, and using 
DIOU-NMS can improve 4.8%, 4.2%, 5.5%, and 3.6%, 
respectively, compared with the standard YOLOv7 net-
work, indicating that adding the CBAM attention mecha-
nism and fusing Bottleneck Transformers improves the 
feature extraction capability and enhances the multi-scale 
feature fusion of the network. Improving non-maximal 
suppression and adding multi-scale feature detection con-
tribute to improving the fitting ability of the network.  

Tab.5 and Tab.6 below list the training set results for 
all categories on the NWPU-VHR10 and DOTA1.0 data 
sets. It can be found that before and after the model im- 

 
provement, the training results of the same category vary 
greatly. Especially when the detection target is large, the 
performance of the model can be improved. 

Such as helicopters, roundabout, and large vehicle on 
DOTA1.0 dataset, basketball courts, tennis courts and 
storage tanks on NWPU-VHR10 dataset, the detection 
effect of small targets is also improved significantly, 
such as small vehicle on DOTA1.0 dataset and vehicle 
on NWPU-VHR10 dataset. 

It can be seen from Tab.7 that the accuracy of im-
proved YOLOv7 on the NWPU-VHR10 dataset has in-
creased by 6.3% compared with YOLOv7, but the num-
ber of parameters has increased by 8.8M, and the number 
of floating-point calculations has increased by 22G. This 
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is also the deficiency of this paper, which needs to be  further optimized. 
 

Tab.5 Training results for all categories in the NWPU-VHR10 dataset 

 Precision (%) Recall (%) mAP50 (%) 
Method 

 YOLOv7 Improved 
YOLOv7 YOLOv7 Improved 

YOLOv7 YOLOv7 Improved 
YOLOv7 

 PL 99.0 97.7 98.2 99.0 95.5 99.5 
 SH 94.6 91.5 83.1 79.4 90.1 83.7 
 ST 78.3 99.7 78.6 95.8 73.4 99.0 
 BD 95.7 90.4 98.4 1 98.9 99.1 

Class TC 92.3 97.5 83.9 97.5 93.2 97.0 
 BC 87.9 87.4 84.6 85.7 86.7 92.8 
 GTF 1 93.6 88.9 1 96.8 93.7 
 HA 98.2 95.4 89.1 93.6 96.9 93.9 
 BR 94.4 92.1 66.7 80.0 81.8 85.1 
 VE 91.4 95.0 60.0 82.6 76.0 84.9 

 

Tab.6 Training results for all categories in DOAT1.0 dataset 

Precision (%) Recall (%) mAP50 (%) 
Method  

YOLOv7 Improved 
YOLOv7 YOLOv7 Improved 

YOLOv7 YOLOv7 Improved 
YOLOv7 

 SV 53.7 69.0 78.7 77.2 65.3 76.4 
 LV 82.0 86.4 85.8 85.4 86.8 89.9 
 PL 91.6 92.3 89.9 90.5 92.5 95.3 
 ST 89.8 89.3 66.8 71.9 75.1 82.8 
 SH 89.5 90.0 87.4 87.7 88.6 89.5 
 HA 84.5 84.7 82.3 83.8 83.8 86.9 
 GTF 79.2 82.7 60.4 63.6 67.2 69.8 

Class SBF 72.5 75.4 57.0 58.7 64.7 68.7 
 TC 95.7 95.1 92.4 92.5 94.2 95.2 
 SP 68.1 66.5 65.5 71.2 61.4 64.9 
 BD 82.4 79.4 66.5 65.3 73.1 74.2 
 RA 74.2 84.6 44.1 43.8 50.8 58.4 
 BC 76.6 75.8 69.0 68.5 68.8 71.1 
 BR 67.1 66.7 39.7 43.8 45.2 49.4 
 HC 37.2 63.9 54.5 57.5 47.5 54.4 

 
Tab.7 Test results of different models on NWPU-VHR10 
dataset 

Method mAP (%) #Param FLOPs 

YOLOv7 89.3 37.3 M 105.1G 

YOLOv7-tiny-silu 86.8 6.1 M 13.2G 
Improved YOLOv7 95.6 46.1 M 127.1G 

 
In this paper, the improved YOLOv7 model is applied 

to the detection task of remote sensing images with a 
relatively high proportion of small targets and complex 
targets and different target scales. By adding small-scale 
detection layers and obtaining anchor frames for linear 
scaling operation through K-means algorithm clustering, 
the missed detection rate of remote sensing small-scale 
targets is reduced with better detection effect. Fusing 
Bottleneck Transformers in the backbone network sig-
nificantly improves the baseline and also reduces the  

 
parameters with minimum delay overhead. Adding 
CBAM in the neck attention mechanism to make the 
algorithm locate and identify remote sensing image tar-
gets more accurately and reduce the influence of back-
ground on remote sensing target detection, so as to re-
duce the false detection rate of the network model on 
remote sensing image targets. Finally, the non-maximum 
suppression function is modified to improve the recogni-
tion effect of the network model on remote sensing im-
age dense targets. The experimental results show that the 
optimized YOLOv7 model effectively detects remote 
sensing images, and the mean average accuracy and 
small target class accuracy are significantly improved. 
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