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The effectiveness of deep learning networks in detecting small objects is limited, thereby posing challenges in ad-
dressing practical object detection tasks. In this research, we propose a small object detection model that operates at 
multiple scales. The model incorporates a multi-level bidirectional pyramid structure, which integrates deep and shal-
low networks to simultaneously preserve intricate local details and augment global features. Moreover, a dedicated 
multi-scale detection head is integrated into the model, specifically designed to capture crucial information pertaining 
to small objects. Through comprehensive experimentation, we have achieved promising results, wherein our proposed 
model exhibits a mean average precision (mAP) that surpasses that of the well-established you only look once version 
7 (YOLOv7) model by 1.1%. These findings validate the improved performance of our model in both conventional 
and small object detection scenarios. 
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Deep learning-based object detection constitutes a fun-
damental task in the domain of computer vision, with the 
objective of precisely recognizing and localizing specific 
objects within images or videos. Leveraging deep neural 
network models, such algorithms automatically extract 
discriminative features from input visual data and sub-
sequently detect the objects of interest by virtue of ac-
quiring substantial knowledge from extensive annotated 
training datasets[1-3]. 

Encountering small objects during the process of deep 
learning object detection engenders formidable chal-
lenges[4,5], effectively impeding the attainment of supe-
rior precision and inevitably impacting the model’s in-
ference performance. Notable hurdles governing this 
issue encompass the following aspects[6-8]. 

Size issue: Small objects generally possess diminutive 
spatial dimensions, often measuring merely a few pixels 
in comparison to the overall image. Consequently, their 
detection and localization become arduous as intricate 
details and characteristic features may become either 
obscured or lost within the image. 

Feature representation: Small objects exhibit features 
that are typically fainter or more ambiguous in nature, 
leading to less precise or comprehensive representations 
acquired by deep learning models. Traditional convolu-
tional neural networks tend to exhibit a bias towards ac-
commodating larger objects in their design, rendering 
them less adept at extracting features from small-sized 

objects. 
Limited semantic information: Small objects fre-

quently present limited availability of informative se-
mantic cues. Owing to their restricted levels of details, 
the features of small objects may become entangled with 
the surrounding background, thereby impeding their dis-
cernibility. This insufficiency of discriminative informa-
tion consequently hinders the model’s ability to effec-
tively recognize and classify small objects. 

Class imbalance issue: Within the realm of object de-
tection, small objects are often less prevalent compared 
to their larger counterparts. This class imbalance can lead 
to an overemphasis on larger objects during the training 
process, consequently marginalizing the attention de-
voted to small objects and compromising their detection 
capabilities. 

Consequently, the detection of small objects is notably 
susceptible to issues such as missed detection and false 
positives[9-12]. To enhance accuracy while maintaining 
computational efficiency, a multi-level bidirectional 
pyramid structure is used. Our algorithm holds the po-
tential to enhance accuracy while maintaining computa-
tional efficiency, demonstrating superior performance in 
small target detection. Through effectively reducing rates 
of missed detection and false positives, it affords notable 
improvements not only in detecting objects of conven-
tional sizes but also in the context of detecting small tar-
gets, offering significant advantages for such tasks. 
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The main contributions of this paper are as follows.  
Deployed multi-scale detectors: The detector and its 

adjoint structure are reconstructed, creating a network 
with a different structure from the traditional 
three-detector network, which can improve detection 
capabilities at different scales. 

A novel multi-scale feature fusion bi-directional fea-
ture pyramid is proposed in this study. The bi-directional 
feature pyramid network is reconstructed to facilitate the 
fusion of multi-scale features, enabling the transfer of 
local detailed feature information while maximizing the 
retention of global feature information. To enhance the 
feature fusion capability across multiple scales, the net-
work incorporates jump connections. 

An optimized spatial pyramidal pooling structure is 
introduced in this study. The utilization of a fast spatial 
pyramid pooling method aims to decrease computational 
complexity while maintaining computational accuracy, 
thereby enhancing the computational efficiency of the 
model.  

Parameter calculation volume: By comparing the 
analysis of the amount of model computing parameters 
of different structures, it can reflect the optimization in 
the amount of network computation, while achieving the 
purpose of improving the speed of network computation. 

Deep learning-based object detection networks refer to 
network models that are built upon deep learning tech-
niques and used to detect and localize specific objects or 
targets in images or videos. 

You only look once (YOLO)[13] treats object detection 
as a regression problem. It achieves object detection by 
dividing the entire image into grids and predicting 
bounding boxes and class probabilities within each grid 
cell. YOLO series include YOLO9000[14], YOLO version 
3 (YOLOv3)[15], and YOLO version 4 (YOLOv4)[16], 
among others. With each version release, the YOLO se-
ries continually improves accuracy and performance by 
incorporating more powerful backbone networks such as 
DarkNet, DarkNet-53, and CSPDarkNet, as well as in-
troducing multi-scale predictions, cross-feature layer 
connections, and attention mechanisms. 

Neural architecture search-feature pyramid network 
(NAS-FPN)[17] series leverage neural architecture search 
(NAS) techniques to automatically search for the optimal 
backbone network architecture for object detection. It 
combines the searched architecture with the feature pyra-
mid network (FPN) to enhance the performance of object 
detection. NAS-FPN further improves the performance 
and accuracy of object detectors by employing search al-
gorithms to optimize network depth, feature map size, and 
channel numbers. Furthermore, NAS-FPN introduces the 
bi-directional feature pyramid network (BiFPN) structure 
to strengthen the feature pyramid network. 

EfficientDet[18] is a series of object detectors proposed 
by the Google team in 2020. It utilizes EfficientNet as 
the backbone network and combines BiFPN with Effi-
cientHead to achieve efficient and accurate object detec-

tion. EfficientDet series achieved better object detection 
performance by leveraging the efficient feature extrac-
tion capability of EfficientNet and the multi-scale feature 
fusion of BiFPN. The different versions of the series, 
ranging from EfficientDet-D0 to EfficientDet-D7, strike 
a balance between network scale and accuracy, making 
them suitable for various application needs. 

These series have played a pivotal role in the ad-
vancement of object detection methods in the field, pro-
pelling detection algorithms towards higher levels of 
performance and efficiency. 

Many researchers have conducted extensive studies to 
address the challenges posed by the low resolution and 
vulnerability to noise of small targets. In Ref.[19], an 
adaptive anchor box structure was proposed, which en-
hanced the learning capability of the model while 
achieving cost reduction effects. Similarly, in Ref.[20], 
an oversampling technique employing the copy method 
was introduced to enhance the detection performance for 
small targets, particularly when dealing with datasets that 
have limited samples containing such targets. 

Improving the detection of small targets necessitates 
optimizing not only data processing techniques but also 
the underlying model structure. To this end, Ref.[21] 
presented an approach that tackled small target detection 
in urban scenes through joint optimization of data proc-
essing methods and model structures. Meanwhile, 
Ref.[22] adopted a functionally enhanced network 
trained in a self-supervised manner to counteract the in-
herent challenge of relatively low signal-to-noise ratio 
experienced by small targets. Additionally, Ref.[23] 

proposed a feature pyramid fusion network based on 
attention mechanism, which effectively preserved key 
information of small targets and proved effective for 
addressing the task of detecting small targets. 

In this study, we optimize the model structure by in-
corporating a multi-scale detection head and a path ag-
gregation network. These enhancements aim to maxi-
mize the preservation of critical information pertaining to 
small targets, consequently improving their detectability. 

The input image is first processed by the backbone 
network to extract feature information from different 
levels of abstraction. The extracted features are then fed 
into the neck network, which combines and fuses them to 
obtain a more comprehensive representation of the ob-
ject. Finally, the prediction head generates the bounding 
boxes and class probabilities based on the fused features 
and output the final results. This paper proposes a new 
optimized network structure, which can be divided into 
four parts, input, backbone, neck, and prediction as 
shown in Fig.1. 

The input component of the proposed algorithm ap-
plies data augmentation techniques such as flipping, fill-
ing, and Mosaic splicing to enrich the dataset samples. 
Then, the original input samples are computed to obtain 
the initial prior frame and compared with ground-truth to 
calculate the difference and perform the reverse update. 
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Fig.1 EW network model structure 
 

The backbone component of our proposed framework 
primarily comprises several key modules, namely CBS 
convolution blocks, down sampling modules, feature 
stacking modules, and fast spatial pyramid pooling 
(SPPF) modules. These modules collectively play crucial 
roles in facilitating effective feature extraction, extract-
ing essential information, and suppressing noise within 
the original input samples. 

Research has indicated that incorporating shorter con-
nections between layers proximate to the input and those 
close to the output of the network can render the network 
considerably deeper, more precise. As shown in Fig.2, 
efficient layer aggregation network (ELAN) module can 
provide the model with rich gradient information while 
ensuring the model parameters are lightweight.  

 

 

Fig.2 ELAN structure 

To reduce the amount of model computation, the SPPF 
structure is applied, as shown in Fig.3. It can improve the 
computing speed of the network to some extent. 

In order to better retain the semantic information of 
the shallow network is to maximize the reduction of the 
distortion rate of the model in the operation, so as to 
achieve the purpose of reducing the rate of missed detec-
tion and false detection, as shown in Fig.4. 

In neural networks, after undergoing layer-by-layer 
down sampling, input images will lose some features. 

However, deep networks that have undergone multiple 
down sampling processes can better reflect global fea-
tures. Shallow networks that have not undergone down 
sampling or have undergone fewer down sampling proc-
esses are not likely to cause the loss of key feature in-
formation for small-sized targets. They can retain local 
detailed features, which are important means for recog-
nizing small targets. Therefore, shallow networks are 
crucial for identifying small-sized targets. 

 

 

Fig.3 SPP structure and SPPF structure 
 

 
Fig.4 Path-aggregation network structure 

 
As shown in Fig.5, in conventional neural network 

models, fusion features from layers P5 to P7 are used, 
neglecting the importance of shallow networks. In our



·0246·                                                                          Optoelectron. Lett. Vol.20 No.4 

algorithm proposed in this paper, fusion is conducted 
from layers P4 to P7, which enables the extraction of 

information from shallow networks to improve the mod-
el's sensitivity to small-sized targets.

 

 

Fig.5 Sampling feature maps at various levels of the network 
 

Furthermore, we have tried different schemes such as 
P3 to P6 layers and P3 to P7 layers. The actual results 
have shown that the fusion of P4 to P7 layers is the op-
timal solution in terms of comprehensive accuracy and 
model parameter considerations. 

Adding an additional detection head at 1/4 scale al-
lows the network to better detect smaller objects that can 
result in an overall improvement in the mean average 
precision (mAP) index. 
  The prediction component uses GIoU_Loss as the loss 
function of the bounding box as follows 

  ,
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where IoU denotes the intersection ratio between the 
prediction frame and the real frame, BGT and B denote the 
sizes of the real frame and the predicted frame, and C is 
the minimum convex set enclosing BGT and B. 

The experiment was conducted in the framework of 
Pytorch, a 64-bit Windows 10 operating system, with the 
software and hardware platform parameters shown in 
Tab.1.  

 
Tab.1 Experimental environment 

Configuration Version 

GPU NVIDIA GeForce RTX A5000 

CPU Intel(R) Xeon(R) Platinum 8358P CPU@ 
2.60 GHz 

CUDA 12.0 

Python 1.11.0 

The epoch is 300, the batch size is 64, and the image size is 
640×640. 

The PASCAL VOC dataset was released in 2015, and 
the two versions of VOC2007 and VOC2012 are more 
frequently used in academia. It is a dataset mainly used 
for image classification, target detection, and image 
segmentation. The number of target categories in this 
dataset is all 20, mostly in real scenes, such as people, 
bicycles, cats, dogs, etc. This dataset has good image 

quality and complete labels, and is mostly used for mod-
el performance evaluation. 

The Microsoft COCO (MS COCO) dataset is a com-
prehensive and extensively utilized dataset that finds 
widespread applications in image detection, semantic 
segmentation, and image captioning within the field of 
computer science and artificial intelligence. This dataset 
encompasses a substantial collection of over 330k im-
ages, out of which 220k images have been meticulously 
annotated. These annotations cover a staggering 1.5 mil-
lion targets, which include 80 distinct object categories, 
such as pedestrian, car, and elephant, as well as 91 stuff 
categories including grass, wall, and sky. The sheer scale 
and diversity of this dataset make it an invaluable re-
source for researchers and practitioners seeking to ad-
vance their knowledge and capabilities in computer vi-
sion tasks.   

The traffic camera object detection (TCOD) dataset 
belongs to the small target dataset, and the dataset con-
tains only one category of car, including 6 121 images, 
which can well detect the sensitivity of the model to 
small targets, and this paper also selects this dataset for 
training and detection experiments. 
  In this research, the MS COCO dataset was chosen to 
examine the performance of the model on conventional 
targets, and the TCOD dataset was used to examine the 
effectiveness of the model in detecting small targets. 

 
Tab.2 Dataset 

Dataset Year Number Cases Image size Note 

PASCAL VOC 2007 2010 9 963 20 500×375 Open 

PASCAL VOC 2012 2015 11 540 20 470×380 Open 

MS COCO 2014 328 000 91 640×480 Open 

TCOD 2019 6 121 1 416×416 Open 

 
In order to evaluate the performance of diverse object 

detection algorithms, it is crucial to employ several as-
sessment metrics, including but not limited to mAP, 
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average precision (AP), precision (P), and recall (R).  
Precision refers to the ratio of accurate positive predic-

tions to all positive predictions conducted by the model. A 
higher precision value indicates a lower number of false 
positives, whereas a lower precision value implies a 
higher ratio of false positives. 

Recall illustrates the percentage of truly predicted pos-
itive samples among all actual positive samples, with a 
higher recall value indicating fewer false negatives, thus 
implying that fewer positive samples are omitted. Con-
versely, a lower recall value denotes a higher rate of false 
negatives, indicating that more positive samples are 
missed. 

In order to evaluate the efficiency of the optimized 
multi-scale detector algorithm (EW) for small targets 
detection, this study utilizes several evaluation metrics, 
including mAP, P, and R, alongside model size as an 
additional assessment criterion. The experimental ap-
proach involves a comparison and ablation evaluation 
that gauges the effectiveness of the algorithm. 

According to the statistics of the MS COCO dataset, 
small objects have a relatively high proportion in object 
detection tasks. Depending on different definitions and 
thresholds, small objects can account for 30% to 50% or 
even more of the total number of objects. This depends 
on the standards and definitions used to determine what 
size of objects are considered "small". Therefore, small 
objects are an important subset within the MS COCO 
dataset and pose certain challenges to the accuracy and 
robustness of object detection algorithms. 

Based on the presented Tab.3, it can be inferred that 
the proposed model achieves a 1.1% improvement in 
mAP value compared to the YOLOv7 model by employ-
ing a richer semantic overlay, and by organically inte-
grating the deeper and shallower networks to control 
global and detailed features. Moreover, the proposed 
model surpasses other classical network models, which 
highlights its effectiveness in classical detection tasks. 

Tab.3 Comparison of real-time object detectors (MS 
COCO) 

Method Param FLOPs APval AP50 

YOLOv5-M (r6.1) 
YOLOv5-L (r6.1) 

21.2M 
46.5M 

49.0G 
109.1G 

45.4% 
49.0% 

- 
- 

PPYOLOE-M 
PPYOLOE-L 

23.4M 
52.2M 

49.9G 
110.1G 

48.6% 
50.9% 

66.5% 
68.9% 

YOLOX-M 
YOLOX-L 

25.3M 
54.2M 

73.8G 
155.6G 

46.9% 
49.7% 

- 
- 

YOLOv7 
EW01 

36.9M 
37.4M 

104.7G 
119.7G 

(48.1%) 
(48.8%) 

(65.4%) 
(66.5%) 

 
The data in parentheses in the table are the results of 

our run, and the results in the table indicate that the mAP 
value of the algorithm is improved by 1.1% compared to 
the YOLOv7 model. 

Based on the presented Tab.4, compare our model 

with YOLOv7 and other publicly available models opti-
mized for small targets. Our model achieves better per-
formance in the Pascal VOC dataset. Additionally, com-
paring against other models in the TCOD dataset with 
numerous small targets, our model demonstrates higher 
accuracy in comparison to other small-sized target mod-
els. 

Tab.4 Comparison with other small-scale target de-
tection networks (Pascal VOC & TCOD) 

mAP (%) 
Method 

VOC 2007 VOC 2012 TCOD 
NAS-FPN R-50 (7@256) 640 
NAS-FPN R-50 (7@256) 1 024 

EifficientDet-D5+AA 
EifficientDet-D6+AA 

YOLOv7 
EW01 

80.5 
83.7 
85.1 
85.9 
85.4 
87.0 

80.1 
83.4 
84.2 
85.2 
84.7 
86.1 

85.2 
86.7 
84.7 
85.4 
83.0 
89.2 

 
When detecting the same content, a comparative anal-

ysis between the proposed algorithm and the YOLOv7 
model yielded the following results. 

Small target detection analysis: The proposed algo-
rithm maintains high detection accuracy for larger targets 
while outperforming the YOLOv7 model in detecting 
distant and small targets. 

Missing object detection analysis: The proposed algo-
rithm significantly reduces the likelihood of missed de-
tections due to imbalances between foreground and 
background categories. Moreover, the algorithm exhibits 
advantages in target localization and recognition classi-
fication compared to the YOLOv7 model. 

Dense small target detection analysis: When compared 
to the YOLOv7 model, the proposed algorithm leverages 
deeper and shallower network information to extract 
more detailed global features, resulting in better per-
formance on dense targets. 

According to Tab.5, it can be inferred that the addition 
of multiple detection heads alone, without the incorpora-
tion of a multi-scale network structure, does not result in 
a substantial improvement. As such, it is recommended 
that multi-scale detection heads and their associated 
structures can be implemented concurrently within the 
network.  

 
Tab.5 The results of ablation experiments 

Multi-scale detec-
tion head 

Multi-scale network 
structure 

SPPF Param AP50 

√ 
 
 

√ 
 

√ 
√ 

 
√ 
 

√ 
√ 
 

√ 

 
 

√ 
 

√ 
√ 
√ 

37 842 046 
38 072 424 
37 622 682 
38 204 824 
38 072 424 
37 842 046 
38 204 824 

65.3% 
66.2% 
65.4% 
66.5% 
66.2% 
65.3% 
66.5% 
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In order to address the issue of low accuracy in de-
tecting small objects in object detection tasks, a structure 
that integrates a multi-scale feature network is proposed 
to mitigate the loss of feature information caused by 
down sampling small objects in the model. By enhancing 
the influence of the shallow network and incorporating 
multi-scale detection heads for analyzing larger-sized 
feature maps, the network demonstrates effective percep-
tion of small objects, thereby improving the model's sen-
sitivity towards small objects and achieving the goal of 
enhancing model accuracy. In the future, we will work 
on the correction of the loss function of small targets, so 
that the conventional network model can give better ap-
plicability to small targets, while optimizing the network 
structure to improve the speed.  
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