SHI Chang-kun,NIE Zhong-quan,TIAN Yan-ting,LIU Chao,ZHAO Yong-chuang,JIA Bao-hua.Super-resolution longitudinally polarized light needle achieved by tightly focusing radially polarized beams[J].Optoelectronics Letters,2018,14(1):1-5
Super-resolution longitudinally polarized light needle achieved by tightly focusing radially polarized beams
Author NameAffiliation
SHI Chang-kun Key Lab of Advanced Transducers and Intelligent Control System, Ministry of Education and Shanxi Province, College of Physics and Optoelectronics, Taiyuan University of Technology, Taiyuan 030024, China 
NIE Zhong-quan Key Lab of Advanced Transducers and Intelligent Control System, Ministry of Education and Shanxi Province, College of Physics and Optoelectronics, Taiyuan University of Technology, Taiyuan 030024, China 
TIAN Yan-ting Key Lab of Advanced Transducers and Intelligent Control System, Ministry of Education and Shanxi Province, College of Physics and Optoelectronics, Taiyuan University of Technology, Taiyuan 030024, China 
LIU Chao Key Lab of Advanced Transducers and Intelligent Control System, Ministry of Education and Shanxi Province, College of Physics and Optoelectronics, Taiyuan University of Technology, Taiyuan 030024, China 
ZHAO Yong-chuang Key Lab of Advanced Transducers and Intelligent Control System, Ministry of Education and Shanxi Province, College of Physics and Optoelectronics, Taiyuan University of Technology, Taiyuan 030024, China 
JIA Bao-hua Key Lab of Advanced Transducers and Intelligent Control System, Ministry of Education and Shanxi Province, College of Physics and Optoelectronics, Taiyuan University of Technology, Taiyuan 030024, China
Centre for Micro-Photonics, Faculty of Science, Engineering and Technology, Swinburne University of Technology, Melbourne 3122, Australia 
Abstract:
      Based on the vector diffraction theory, a super-resolution longitudinally polarized optical needle with ultra-long depth of focus (DOF) is generated by tightly focusing a radially polarized beam that is modulated by a self-designed ternary hybrid (phase/amplitude) filter (THF). Both the phase and the amplitude patterns of THF are judiciously optimized by the versatile particle swarm optimization (PSO) searching algorithm. For the focusing configuration with a combination of a high numerical aperture (NA) and the optimized sine-shaped THFs, an optical needle with the full width at half maximum (FWHM) of 0.414λ and the DOF of 7.58λ is accessed, which corresponds to an aspect ratio of 18.3. The demonstrated longitudinally polarized super-resolution light needle with high aspect ratio opens up broad applications in high-density optical data storage, nano-photolithography, super-resolution imaging and high-efficiency particle trapping. This work has been supported by the National Natural Science Foundation of China (Nos.61575139, 61605136, 51602213 and 11604236), and the Youth Foundation of the Taiyuan University of Technology (No.2015QN066). This paper was recommended by the 9th International Conference on Information Optics and Photonics (CIOP 2017). E-mail:niezhongquan@tyut.edu.cn
Hits: 4908
Download times: 0
View Full Text    Download reader