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A geo-localization method is proposed for military and civilian applications, which is used when no global navigation 
satellite system (GNSS) information is available. The open graphics library (OpenGL) is used to build a 
three-dimensional geographic model of the test area using digital elevation model (DEM) data, and the skyline can 
thus be extracted with the model to form a database. Then, MultiSkip DeepLab (MS-DeepLab), a fully convolutional 
semantic segmentation network with multiple skip structures, is proposed to extract the skyline from the query image. 
Finally, a matching model based on convolutional neural network (CNN) feature is adopted to calculate the similarity 
between the skyline features of the query image and the DEM database to realize automatic geo-localization. The ex-
periments are conducted at a 202.6 km2 test site in north-eastern Changsha, China. 50 test points are selected to verify 
the effectiveness of the proposed method, and an excellent result with an average positioning error of 49.29 m is ob-
tained. 
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Recently, automatic geo-localization using a digital ele-
vation model (DEM) and panoramic skyline has emerged 
as a powerful tool that can support a large range of mili-
tary and civil applications, especially when no global 
navigation satellite system (GNSS) information is avail-
able. In this case, geo-localization using natural envi-
ronment images is very useful. However, this is not an 
easy task because of complex and changeable conditions, 
such as lighting, vegetation, and seasons, in natural 
scenes. 

A variety of image-based methods have been proposed 
to locate the position from captured images in recent 
years. These methods mainly determine the image loca-
tion by constructing some features to compare the query 
image with a database image that has geographic mark-
ers. These methods can be divided into two categories, 
geo-localization in urban scenes and geo-localization in 
nonurban scenes. Compared with the former one, 
geo-localization in nonurban natural scenes is considered 
to be more challenging and has gained attention recently. 
For example, TALLURI et al[1] matched horizon lines 
extracted from a query image against those rendered 
from DEM to achieve the geo-localization. STEIN et al[2] 
also used horizon lines for localization. Localization us-
ing horizon line was further studied by NAVAL et al[3, 4]. 
WOO et al[5] studied navigation of unmanned aerial ve-
hicle in mountain areas using DEM and infrared images 
with known altitude using altimeter. BAATZ et al[6] used 

horizon lines to construct local features (contourlets) and 
find the position. Geo-localization of untagged desert 
imagery was studied by TZENG et al[7], who proposed a 
novel skyline-based feature based on concavities. PORZI 
et al[8] proposed a fast method of automatic pho-
to-to-terrain alignment for precise augmented reality on a 
mobile device. Smartphone sensors were used as an ini-
tial estimate for camera orientation, which was refined 
by silhouette matching algorithm similar to Ref.[9]. 
HAMMOUD et al[10] developed a geo-localization 
framework of street-level outdoor images using multiple 
sources of overhead reference imagery, including light 
detection and ranging (LIDAR), DEM and multi-spectral 
land cover/use imagery. An advanced approach based on 
horizon lines was presented by CHEN et al[11]. SAURER 
et al[12] proposed an automated approach for very 
large-scale visual localization that can efficiently exploit 
visual information (contours) and geometric constraints 
simultaneously. GRELSSON et al[13] proposed a position 
estimation method where the horizon line is extracted in 
a 360° panoramic image around the unmanned surface 
vessels. CHIODINI et al[14] performed a sensitivity anal-
ysis of the visual position estimator for rover algorithm 
using data and images provided by the National Aero-
nautics and Space Administration (NASA) mars explora-
tion rover (MER) and the NASA mars reconnaissance 
orbiter. FUKUDA et al[15] used the skyline in a dune area 
to correct the position obtained by GNSS. They first used 
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GNSS to obtain the current unknown area and the am-
plitude components were then extracted as skyline fea-
tures to refine the position.  

However, these existing methods mainly adopted 
hand-crafted features of skyline (e.g., contour words, 
concave-convex feature, amplitude components, etc) to 
obtain the final position. According to the published ref-
erences, these methods seldom obtained accurate me-
ter-level or even 10-meter-level localization in 
large-scale areas. This may be due to the complexity of 
the skyline positioning task (human disturbance and ve-
getation changes, poor skyline discrimination), and the 
complexity of designing features that describe the sky-
line more robustly. Compared to the traditional features 
used to describe the skyline in most studies, convolu-
tional neural network (CNN) can save a lot of manual 
work and obtain more robust features in images by 
learning from a large amount of data[16]. Thus, a location 
algorithm is proposed to improve the accuracy of loca-
tion estimation in a GNSS-denied environment. The 
main contributions of the letter are as follows.  

The effective encoding of skyline is realized by using 
the pretrained VGG16 model and principal component 
analysis (PCA). The VGG16 convolution layer in our 
method is trained into an encoder to express the 
high-dimensional feature of the skyline, and we then use 
PCA to reduce the dimensionality of the CNN feature. 
The use of CNN makes it easier to extract robust features 
by training on large datasets than by designing traditional 
features. Using the learned representation of skyline 
from the encoder, the skyline feature of query image and 
DEM can be compared. 

A new semantic segmentation model is constructed to 
extract the skyline from query image. The key idea is 
that the model combines the skip structure and the image 
detail obtained from the DeepLab V3+ to realize the 
combination of high-level semantics and low-level edge 
information. We refer to our proposed network as the 
MultiSkip DeepLab (MS-DeepLab). We show experi-
mentally that the MS-DeepLab is better than other exist-
ing networks on the skyline extraction task. 

Extensive experiments on the real testing points de- 
monstrate that our method generally outperforms some 
existing methods for localization in GNSS-denied envi-
ronment. Besides, our method can achieve 
geo-localization using only DEM data and panoramic 
images in a large outdoor area in China. 

The main idea of this letter is to determine the geo-
graphic location of the query image by searching for the 
skyline image in the database that is most similar to the 
skyline in the query image. The proposed framework 
consists of two stages (see Fig.1).  

The offline stage consists of constructing the skyline 
knowledge base, where we use open graphics library 
(OpenGL) to render panoramic renderings and encode 
their skylines. The online stage consists of segmenting 
skyline, encoding skyline image, matching feature to the 

reference knowledge base, generating probability map 
and output location.  

 

  
Fig.1 Flowchart of the proposed algorithm 

 
Our query image is in fact a cylindrical projection. 

Thus, it is necessary to ensure that the images in the pa-
noramic database are also cylindrical projections. Spe-
cifically, we developed an OpenGL camera roaming pro-
gram. When rendering the model, the background is set 
to a specific pixel value, and the model color is replaced 
by the model depth. In the program, four images are ob-
tained at each sampling point by controlling the position 
and viewing angle of the camera. The perspective projec-
tion rendering is used as an intermediate result (Fig.2(a)) 
to express the surrounding environment of the sampling 
point. The parameters of the rendered image are vertical 
field of view angle of 38°, horizontal field of view angle 
of 90°, pitch angle of 0°, and roll angle of 0°. This makes 
the rendered map also a depth map, and these four maps 
include all the environmental information around the 
360° of the sampling points. Since what we need is a 
cylindrical projection panoramic image, we thus convert 
the above four perspective projection renderings to cy-
lindrical projection (Fig.2(b)). Then the four renderings 
are stitched together to obtain a cylindrical projection 
panoramic rendering (Fig.2(c)). Therefore, the pano-
ramic database is created and the edge of the skyline 
(Fig.2(d)) can be easily obtained using pixel segmenta-
tion. 

 

       

Fig.2 DEM rendering process: (a) Perspective projec-
tion rendering; (b) Cylindrical projection rendering; (c) 
Panoramic image obtained by cylindrical projection; 
(d) Extracted skyline from image (c)
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The segmentation targets targeted by DeepLab V3+ 
are regional targets that require more attention to high-
er-level semantic features, but as a skyline segmentation 
task, our segmentation target can be seen as a boundary. 
In order to improve the segmentation accuracy of the 
boundary, the decoder section of MS-DeepLab pays spe-
cial attention to the low-level feature maps that contrib-
ute to the boundary segmentation, as shown in Fig.4. In 
MS-decoder, ASPP-outX is first up-sampled by a factor of 4 
and concatenated with 2

EN-outX  to obtain 1
DE-outX . 

1
DE-outX  is up-sampled by a factor of 2 and then concate-

nated with 1
EN-outX  to obtain 2

DE-outX . Finally, 2
DE-outX  is 

up-sampled by a factor of 2 to obtain the segmentation 
result MS-outX . The decode operation is described as 
  1 2

DE-out EN-out 4 ASPP-outConv(Concat(Conv( ),up ( ))),X X X  

  2 1 1
DE-out EN-out DE-outConv(Concat(Conv( ),up( ,2))),X X X  

  2
MS-out DEup( ,2).X X                         (2) 

Due to MS-DeepLab's special attention to low-level 
features that are useful for improving boundary accuracy, 
the MS-DeepLab performs better than DeepLab V3+ on 
the skyline extraction task. 

Generally, the extracted skyline has two characteristics. 
One is that the skyline may have some missing data and 
some noise caused by interference, and the other is that 
the skyline has local similarity, which means that the 
skylines in adjacent areas may have higher similarity. 
Due to factors such as vegetation coverage or artificial 
obstacles, there are slight differences between the skyline 
extracted from the query image and the skyline obtained 
from DEM rendering. We propose a matching model 
based CNN feature to solve the problem. We used the 
VGG16 model to extract the image features and the PCA 
algorithm to dimensionally reduce the features. 

Here, the pretrained VGG16[21] is used to construct the 
feature encoder, and the feature map output is then ex-
tracted by the last convolutional layer of VGG16 as the 
feature expression of the image. Thanks to the effective 
encoding of skyline by using the pretrained VGG16, the 
high-dimensional feature can be better expressed. The 
VGG16 convolution layer pretrained on the ImageNet 
dataset is used to construct our matching model. Al-
though the VGG model aims at the feature extraction of 
the general dataset, the experimental results prove the 
effectiveness of the VGG model for our task. 

For offline knowledgebase establishment, the feature 
encoder is used to encode the skyline of the DEM pano-
ramic rendering to obtain the offline database. In order to 
reduce the storage space of the features and improve the 
efficiency of the operation, we use this feature set to train 
the PCA model to downscale the CNN features, and the 
downscaled feature set is used as a knowledge base for 
online localization. 

For online localization, a feature encoder is used to 

encode the skyline feature of the query image, and di-
mensionally reduce skyline features using a PCA model 
trained in the offline phase. Then, the Euclidean distance 
between the skyline feature of the query image and each 
DEM rendering in the offline skyline knowledge base is 
calculated to obtain the probability matrix of each point 
in the region of interest. To obtain the final location of 
the target, a Gaussian filter is used here to smooth the 
probability matrix. Finally, the point with the highest 
similarity (minimum distance) is selected as our final 
positioning point. 

Fig.5 shows our experimental equipment, and the re-
connaissance ball is used as our main data acquisition 
equipment. The ball contains a horizontal sensor to ob-
tain the pitch angle and roll angle of the equipment. A 
digital compass is also used to collect the heading angle 
by using geomagnetic information. The sensor accuracy 
of the roll angle and pitch angle collected by the hori-
zontal sensor is 0.1°, and the accuracy of the heading 
angle is 1° when no obvious interference exists. We in-
stalled the ball on the experimental vehicle, and the 
height from the ground was approximately 2.5 m when 
the ball was raised. Thus, it is convenient for us to collect 
data in mountain or hilly areas. 

 

 
(a)                 (b)  

 
(c)                         (d) 

Fig.5 Experimental equipment and testing points: (a) 
Reconnaissance ball; (b) Our experimental vehicle; (c) 
Location of our test area; (d) Distribution of 50 test 
points 
 

50 test points are selected to verify the effectiveness of 
the proposed method. For each testing point, we collect a 
panoramic query image that contains position, attitude 
and heading angle. The real position information was 
used as a label to obtain the positioning error, and the 
attitude and heading angle were used to correct the pa-
noramic images. As shown in Fig.5(c), all the samples 
are distributed in a hilly area in north-eastern Changsha, 
China. The corresponding DEM data is obtained from 
the Hunan Remote Sensing Center of China. As can be 
seen in Fig.5(d), a total area of 202.6 km² is regarded as 
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our final test area. Besides, we also notice that the sam-
pling density directly affects the positioning error of the 
final positioning system. To balance the calculation 
speed and the positioning accuracy, we take 10 m as our 
sampling interval to generate our panoramic database.  
  The dataset that used for training our MS-DeepLab to 
extract skyline has about 2 000 images, including hun-
dreds of real-captured images and a part of Saurer's pub-
lic dataset[12]. Our MS-DeepLab is trained on this dataset 
from scratch. In our experiments, we compare the inter 
section over union (IOU) index value of the proposed 
MS-DeepLab with those of U-Net and DeepLab V3+ by 
using the same training strategy. Experimental results 
show that the IOU values are 72.53, 71.21 and 76.04 for 
U-Net, DeepLab V3+ and MS-DeepLab, respectively. 
The improvement in skyline extraction accuracy is of 
great significance to the subsequent localization process. 
Although the improvement in IOU is only a few percent, 
it is still very important because these few percent are 
likely to be the pixel that is difficult to classify. Fig.6 
shows the effect of partial skyline segmentation, where 
the scene was successfully localized due to the im-
provement in skyline accuracy. 
 

 

Fig.6 Comparison of segmentation results: (a) Origi-
nal image; (b) Skyline obtained using MS-Deeplab; (c) 
Skyline obtained using DeepLab V3+; (d) Skyline ob-
tained using U-Net 

 
To visualize the location results, we plot our location 

probability. Fig.7(a) shows the positioning probability 
map, and the corresponding local amplified probability 
map is shown in Fig.7(b). In Fig.7(b), the center point of 
the red box is our location point, and the center point of 
the blue box is the labelled location. The closer to the red 
color, the higher the probability of the point is. As shown 
in Fig.7, the predicted location point is very close to the  
ground truth, which verifies the effectiveness of our 
method. 

In our experiments, we also find that when the error is 
very small, the positioning point is located near the la-
belled point. In this case, the positioning is regarded as 
successful. Otherwise, when the error is large, the posi-
tioning point may randomly appear in the region of in-
terest since the point with the highest possibility is bound 
to be output. This is regarded as a failure case.  

 

  
 

(a) 

     
(b) 

Fig.7 Positioning probability maps: (a) Global prob-
ability map; (b) Local amplified probability map 
 

According to our principle, for the 50 test points, when 
directly using the extracted features for localization, the 
positioning success rate is 92%, and the average posi-
tioning error is 49.29 m. More specifically, 64% of the 
sample positioning errors are less than 50 m, 82% of the 
errors are less than meters. After using PCA to down-
scale the features, the localization accuracy did not de-
crease when the feature dimension was reduced to 2 048 
dimensions. The decrease appeared when the feature 
dimension was reduced to 1 024 dimensions, as shown in 
Fig.8. After dimensionality reduction, the localization 
time was reduced to approximately 30 s.  

  

  
Fig.8 The effect of the number of dimensions of re-
tained features on success rates 

 
For the failure case, we find that these samples are 

generally captured in some extreme situations. For 
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example, a large part of the skyline is largely occluded 
by houses, towers or other men-made objects. The 
mountain peak is lost because of the limitation of the 
image view angle. All these factors make it very difficult 
to obtain a nearly complete skyline, and thus finding the 
most similar skyline in the DEM rendering database be-
comes impossible. Besides, we also compared our 
method with some influential localization methods. 
Tab.1 shows the comparison results. Test area defines 
the area on which the method has been tested in original 
publication; localization success rate (Local. succ.) de-
notes the best result achieved with given method; aver-
age error (Avg. err.) and maximum error (Max. err.) de-
note the average distance and maximum distance from 
the ground-truth position which is considered to be cor-
rect localization. 

 
Tab.1 Performance comparison of different 
geo-localization methods 

Method Test area Local. succ. Avg. err. 

Ref.[1] 148 km² — — 

Ref.[2] 298 km² — — 

Ref.[4] — — — 

Ref.[3] 900 km² — — 

Ref.[5] 2.28 km² — 393 m 

Ref.[6] 40 000 km2 88% 
Max. err. 
1 km 

Ref.[7] 10 000 km2 — — 

Ref.[8] 100 places in Alps — 1.87° 

Ref.[9] 
28 photos in Alps, 
Rocky Mnts. 

86% — 

Ref.[10] 20 000 km2 49% — 

Ref.[11] 
10 000 km2 (Amer-
ica Asia) 

60% 
Max. err. 
4.5 km 

Ref.[12] 40 000 km2 88% (<1 km) — 

Ref.[13] 0.006 4 km2 — 2.72 m 

Ref.[14] 1 km2 — 51 m 

Ref.[15] 0.25 km2 — 1.81 m 

Ours 202.6 km2 
92% 
(<200 m) 

43.13 m 

 
As can be seen in Tab.1, most existing methods are 

still not very precise. For example, in the results of 
SAURER et al[12], the distance under which the query is 
considered as correctly localized is 1 km, which is longer 
than our method, whose related distance is 200 m. In 
case of horizon-based localization proposed by SAURER 
et al[12], 40% of query images need user interaction for 
discovering horizon line, mainly due to tree occlusions 
which arise in real-world photos quite often[22]. Thanks 
to MS-DeepLab, our method can automatically extract 
skyline even in this complex situation. Several ap-

proaches for camera orientation estimation are also pro-
vided in Tab.1. The localization success rates of the two 
methods are 86% and 88%, respectively. The localization 
success rate of our method is the highest compared with 
other methods shown in Tab.1. Besides, our test area can 
be further extended to very large scale as long as certain 
conditions are met. It can be generally assumed that the 
larger the location area, the greater the probability of 
location failure, and the greater the probability of loca-
tion error. Therefore, considering the location area size, 
location success rate and location accuracy, it can be 
assumed that our method has a greater advantage over 
some influential existing methods. 

A geo-localization algorithm has been studied in this 
letter. First, we use OpenGL to render the DEM data into 
a three-dimensional model to establish a skyline know- 
ledge base for retrieval and positioning. Second, 
MS-DeepLab is proposed to extract the image skyline. 
Third, the pretrained CNN model is used to extract the 
high-dimensional feature information as the feature ex-
pression of the skyline, which greatly improves the lo-
calization accuracy. A comparative study is proposed 
with a few representative methods, which demonstrates 
that similar or better results can be obtained by using the 
proposed geo-localization method. 
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