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Recently, the generative adversarial network (GAN) has been extensively applied to the cross-modality conversion of 
medical images and has shown outstanding performance than other image conversion algorithms. Hence, we propose a 
novel GAN-based multi-domain registration method named multiscale diffeomorphic jointed network of registration 
and synthesis (MDJRS-Net). The deviation of the generator of the GAN-based approach affects the alignment phase, 
so a joint training strategy is introduced to improve the performance of the generator, which feedbacks the structural 
loss contained in the deformation field. Meanwhile, the nature of diffeomorphism can enable the network to generate 
deformation fields with more anatomical properties. The average dice score (Dice) is improved by 1.95% for the 
computer tomography venous (CTV) to magnetic resonance imaging (MRI) registration task and by 1.92% for the 
CTV to computer tomography plain (CTP) task compared with the other methods. 
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Many different domains of images can provide different 
information, especially in the field of medical imaging. 
The multi-domain medical image of the abdomen often 
contains multi-modality and multi-phase images. By 
aligning the spatial structure of the multi-domain images, 
the doctor can use this information to make better diag-
noses and treatment plans for their patients[1]. Due to the 
internal or external forces, the anatomical structures of 
the abdomen in the multi-domain images are inevitably 
deformed, so the acquired multi-domain images are usu-
ally misaligned[2]. If the register can precisely calculate 
the spatial correspondence between two images, it can 
align them effectively[3,4]. However, in the cross-domain 
image of abdomen, due to significant style differences, 
accurate spatial deformation field generation requires 
auxiliary information of labels[5-7]. Meanwhile, labeling 
is always time-consuming and costly, which makes it 
very difficult to use labels to assist in registration[8,9]. 

Multi-domain images can be generated without paired 
images with generative adversarial network (GAN), pro-
viding a new solution to multi-domain alignment tasks 
that lack label data. In this paper, we propose a joint 
training strategy. First, we pre-train a registration net-
work on the real image set. Based on the property that 
the pre-trained registration network can generate rea-
sonable deformation fields between the real image pairs 
while generating unreasonable deformation fields on the 
synthetic and real image pairs with structural deviations, 
we introduce the adversarial learning mechanism after 

the register to feed the structural deviations between the 
real image and the synthesized image caused by the syn-
thesizer during the registration process, thus guiding the 
synthesizer to generate the structure of the synthesized 
images more consistent. In addition, due to the large de-
formations in the abdominal images, we construct a kind 
of multi-scale diffeomorphic registration network to en-
hance the performance of multi-domain registration in 
the abdomen and generate deformation fields with a rea-
sonable anatomical structure much better. 

The diffeomorphic maps are used to preserve the to-
pology structure. In some literature, the deformation can 
be represented as a member of the Lie algebra so that all 
the deformation field is defined as φt, where t is set from 
0 to 1 and is exponentiated to produce a time one defor-
mation φ1. In this paper, the φ1 is obtained by integrating 
the stationary velocity field v over time t∈[0, 1] using 
the scaling and squaring method for the image pairs. Fol-
lowing the Padé approximant, as shown in Eq.(1), in 
general, T>6, and in our experiment, T is set as 7. To 
obtain the φ1, we recursively calculate Eq.(2) 

(1/2 ) ( ) / 2 ,
T Tx v x                           (1) 
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t t t

  

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Traditional deformable registration is always ab itera-

tive-based procedure that gradually increases the similar-
ity between images to complete the registration task. All 
these methods minimize a function that measures the 
morphological differences between the pairs. Some of
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the studies parameterize the problem with displacement 
fields, such as Demons[10], B-splines-based methods, and 
their diffeomorphic implements. Besides, several studies 
see the registration task as a fluid problem, including 
vector momentum-parameterized stationary velocity 
field[11] and large displacement diffeomorphic metric 
mapping[11]. These classic deformable registration meth-
ods solve registration problems by iterating optimization 
objectives. So, when the image pairs have great morpho-
logical differences, the registration time would increase 
dramatically.  

Learning-based cross-domain registration methods 
need to build a similarity loss to measure the quality of a 
deformation field[12]. The similarity measure that is in-
sensitive to pixel intensity difference of image is gener-
ally selected. However, when the stylistic differences in 
the image pairs are too large, using some of the main-
stream metrics (cross-correlation coefficient, mutual in-
formation) does not yield satisfactory results. 

ZHU et al[13] presented an approach for learning to 
translate an image from a source domain to a target do-
main in the absence of paired examples. GAN allows for 
stylistic migration of images while keeping their content 
as unchanged as possible. By converting the images to be 
registered to the same domain, the cross-domain registra-
tion is simplified to mono-domain registration.  

Some researches used a generator network that was 
trained by unaligned images[13-17]. The generator should 
be able to transform a real image from one domain to the 
other, and the anatomical structures of the synthesized 
image and the original one should be aligned. Then, the 
register can be trained on the real/synthetic data in one 
domain. However, the lack of sufficient structural con-
straints usually results in large synthetic misalignments. 
To generate a more anatomically correct deformation 
field, registration loss is used as a constraint on the syn-
thesizer in Ref.[18]. However, they found the registration 
performance was worse than conventional registration 
networks[19], and ARAR et al[20] also achieved success in 
the field of natural image registration by feeding the reg-
istration loss back into generator network. However, 
medical images are typically more structurally complex 
than natural images. Because the generator does not have 
explicit structural constraints in the adversarial learning 
of unpaired images, and although most of the structural 
information can be retained in the adversarial learning, 
subtle unreasonable structures may still be generated to 
have an impact on the subsequent mono-domain registra-
tion. 

In the traditional registration methods, multi-scale and 
cascaded registration methods have achieved good re-
sults, so some works are trying to introduce these into 
learning-based registration methods. ZHAO et al[21] pro-
posed recursive cascaded networks, a general architec-
ture that enabled learning deep cascades for deformable 
image registration. Their experiments demonstrated that 

cascaded networks could achieve better performance 
than deeper or wider networks with the same number of 
parameters. KIM et al[22] proposed CycleMorph (CM) 
imposing the cycle consistency on images to improve 
topological preservation. And the multi-scale implemen-
tation aligned the images at patches and original ones. 
However, many experiments are needed to find the op-
timal patch size and overlapping. What’s more, the 
training on patches of the volume is not easy to converge 
for large deformation organs. 

The architecture of our proposed multiscale diffeo-
morphic jointed network of registration and synthesis 
(MDJRS-Net) is illustrated in Fig.1. In this research, we 
have two domains, X and Y. Let x and y be the samples 
that are randomly sampled from X and Y. We utilize 
GAN to translate the image from one domain to another. 
G is the generator. D and Dφ are the discriminators. R is 
the registration network. The real images xi and yj are 
from one patient but haven’t been aligned. yi

* is trans-
lated by the G from xi.   

The goal of the research is to align the image xi to yj 
and xi and yj are the paired but not aligned images. 

The register R generates the deformation field φ be-
tween real image yi and fake image yj

* or real images yi 
and yj, shown as 

R( , ), R( , ),i j i j i ji j
y y y y  


 

         (3) 

where R(·) denotes a multivariate function that generates 
a deformation field from a pair of prior distribution yi, yj. 
The transform function φi→j denotes the registration di-
rection from moving image yi to fixed image yj. 

The G is a generative network that generates a 
cross-domain image. The Dφ is a deformation field dis-
criminator which improves the G using the strategy of 
adversarial learning from Ref.[23], shown as 

dadv = log(D ( )) log(1 D ( )) .j i j i
L     

         (4) 

G could be optimized by the difference of the two de-
formation fields that contain deviation of the synthesizer, 
shown as 
  dc

1
( ) ( ) .i j i ii j

L y y   
                    (5) 

We utilize CycleGAN[13] to generate the cross-domain 
images, because it can perform on unaligned datasets. In 
the joint training, Ladav and Ldc are integrated into the 
training of G, shown as 

Lsyn=Lcyclegan+λLdadv+βLdc.              
       

(6)
 

As shown in Fig.2, our registration network consists of 
two different subnetworks based on VoxelMorph 
(VM)[19]. The g0 and g1 are parameter networks (structure 
of U-Net) to generate velocity fields. The low-resolution 
registration network has half number of parameters 
compared to the high-resolution one. The scaling and 
squaring layers are the same in the two subnetworks. Lreg 
consists of similarity loss and regular items. The loss 
function is shown as 
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Lreg=λ1Lsmooth+λ2Lsim+λ3Lanchor,                 (7) 
where Lsmooth is the smooth item to preserve the topology,  

and Lanchor is the edge loss to limit the deformation field 
to nearly a zero displacement at the edge of the images. 

 

 

Fig.1 Overview of our MDJRS-Net (The stream of blue lines represents the registration of composite image and 
real image, and the orange ones are for real pairs)  

 
The similarity loss Lsim is an indirect assessment to 

measure the quality of the transform field. Lncc is always 
used when the images are cross-domain pairs, shown as 

ncc
Cov( , )= .

Var( )Var( )

x yL
x y


                    

(8)
 

The Cov(·) denotes the covariance between image x 
and y, and the Var(·) denotes the variance of x. 

In the neural network training stage, registration may 
crash because of the large displacement of the whole 
moving image, especially at the end of the training. To 
reduce this occurrence, anchor loss is proposed. The loss 
is shown as 

anchor ( ),
i

L x i


                            
(9)

 
where the Ω denotes the pixel index set at the edge of the 
deformation field. 

Like deep supervision, we use a cascaded supervision 
where the registration loss is applied for both 
low-resolution and high-resolution networks to acceler-
ate the training process and balance the registration per-
formance of the low-resolution network and 
high-resolution one. 

The training stage refers to Ref.[24]. First, the regis-
tration network R is pre-trained on a real image dataset. 
Subsequently, we trained the G and R jointly and the 
training process is shown in Fig.1. Because of the 
low-quality synthetic images which would bring in a lot 
of noise interfering with R training, the Frechet inception 
distance (FID)[25]

 is applied to measure the quality of 
synthetic image. 

To evaluate the registration results, the average dice  

coefficient (Dice), average symmetric surface distance 
(ASD), and the negative Jacobian determinant map (|Jφ|
≤0) are used as evaluation metrics in this paper. 

Dice measures the organ label’s volume coverage rate 
after registration. Given the segment label of the moving 
image as A, and the segment label of the moved image as 
B, Dice can be defined as  

( , ) 2 .A BDice A B
A B


 


                 

   
(10)

 
ASD also measures the organ label’s coverage but cal-

culates outline distances of the segment labels, shown as 
min d( , )

( , ) ,b Ba A
a b

ASD A B
A

             
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where d(·) is the Euclidean distance between the two 
pixels a and b. 

The negative Jacobian determinant map is used to 
measure the organ folding caused by the deformation 
field ߮. The smaller the value, the less the organ folding. 
The Jacobian determinant is shown as 

jet( ) ,
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where jet(·) calculates the determinant for the Jacobian 
of ߮. ߮u and ߮v are the components of deformation ߮. 

Our abdominal dataset was obtained from the partner 
hospital and included computer tomography plain (CTP)/ 
computer tomography venous (CTV)/magnetic resonance 
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venous (MRV) three-dimensional (3D) voxel data from a 
total of 51 patients. We used a total of 1 020 pairs of 
two-dimensional (2D) slices of these 3D voxels as train-

ing data. To evaluate the performance of the alignment, 
we manually annotated the contours of the liver and 
spleen for all test samples. 

 

Fig.2 Registration network of MDJRS-Net (The spatial transform network[4] warps the moving image to the moved 
image, and the parameter networks g0 and g1 are learning to generate the deformation field) 

 
Our experiments were conducted on two 2080Ti GPUs 

with 11GB of video memory. In our experiments, we set 
the batch size to 2 and trained 500 epochs iteratively 
during the training of the registration network and the 
joint network, respectively. We normalized these ab-
dominal images using Z-Score before feeding into the 
network. The structure of the generator module G and the 
deformation field discriminator Dφ of the network is re-
ferred to Ref.[16], using the residual blocks of ResNet. 
For the registration module, we used U-Net as the back-
bone to generate the deformation fields. In the loss func-
tion of the registration network, the hyperparameter of 
the smoothing term is set to 3, the optimizer uses Adam, 
and the learning rate is set to 2×10-5. The structure of the 
evaluation network is similar to that of InceptionV3 
when the FID is then computed[25]. 

We compare the MDJRS-Net with five exiting 
multi-domain registration methods, including synthesis, 
localization, inpainting, and registration (SLIR)[16], un-
supervised multi-modal deformable image registration 
(UMDIR)[15], adversarial uni- and multi-modal stream 
networks (ADSN)[17], geometry preserving registration 
network (GPN)[20], and CM[22], where CM does not 
translate the images between two domains. Due to the 
lack of segment masks are in our training dataset, the 
weak supervision methods[1,6,7,18] that require labels have 
not been compared. Besides, different structures of the 
registration network are applied, or the cascade supervi-
sion is ablated, and we test the performance of the 
MDJRS-Net on the CTP/CTV dataset. 

The qualitative comparison of multi-modality and  

multi-phase registration is illuminated in Fig.3. The 
bi-direction alignments of the CTV/MRV image and 
CTP/CTV image are both carried out, and the organ 
contours coincidence of the moved image obtained by 
MDJRS-Net and the fixed image are much better than 
that of other methods. In addition, the moved images 
obtained by other comparison algorithms have more dis-
tortions during multi-modality alignment, which implies 
that the multi-modality alignment is of more challenging. 

In Tab.1, we can find that although the network archi-
tecture of CM is based on GAN, its performance on the 
alignment of MRI and CT with large modal differences is 
much lower than that of other GAN-based cross-domain 
registration methods because it does not perform image 
style transformation on cross-domain image pairs. 

The ablation study of multi-phase alignment is dem-
onstrated as Fig.4. From these figures, when multi-scale 
layer or velocity integration in the MDJRS-Net model is 
ablated, the organ contour distance between the fixed 
image and the moved image increases, and the moved 
image may have distortion even.  

In our ablation experiment, the hyperparameter of the 
smooth item in the registration loss is set to 3, and the 
hyperparameters of similarity loss and the anchor loss 
are set to 7 and 10. 

The Jacobian determinant maps are shown in Fig.5, 
The first and the second columns show the moving im-
age and the fixed image. The third column is the moved 
image warped by different registration networks. The 
fifth column is the |Jφ| map, which shows the Jacobian 
determinants map of the deformation field. The red 
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points represent the organ folding which is anatomic. 
The first row shows the multi-scale network trying to 

align in more detail, for example, in the lower right cor-

ner of the image, it looks better than the other two. 
However, the transform field causes too much organ 
folding (red points). 

 

Fig.3 The results of comparison experiments for multi-modality and multi-phase registration (The four images of 
multi-modality and multi-phase in column (a) are paired respectively, and the red and blue lines in the images are 
the outlines of the liver and the spleen; Images in the columns (b—g) are the moved images, and the yellow and 
green lines in the images are the outlines of the organs that are warped by different registers) 

 
The models in the second and the third rows are using 

the static velocity field to generate a smooth displace-
ment field. Besides, because the upsampling (bilinear 
interpolation) is required for the low-resolution deforma-
tion field, it was smoothed implicitly. This operation also 
reduces the number of singularities in the generated ve-
locity field. 

Quantitative results are statistically in Tab.2. We can 
see that the multi-scale registration network improves the 
performance, and the constraint of the diffeomorphism 
would keep the topological property. 

It shows that the multi-scale networks significantly 
improved performance but increased the folding of the 
organization. The folding organ abnormalities were re-
duced with the diffeomorphism constraint, while the reg-
istration results have deteriorated slightly.  

Finally, we improve the performance of registration by 
adding cascade supervision and striking a balance be-
tween the rationality of the deformation field and the 
accuracy of the registration task.  

In this research, a novel registration model named 
MDJRS-Net is proposed. First, the loss term is divided 
into two parts, and the part caused by synthesis deviation 
is only used to optimize the synthesizer. Secondly, the 
adaptive generalization loss is constructed to generalize  

Tab.1 Average dice scores and average symmetric 
surface distances of multi-domain registration (The 
symbol “→” represents the transform direction from 
different domains) 

Model CTV→MRV MRV→CTV 

SLIR[16] 83.98±3.94 82.67±4.70 

UMDIR[15] 83.82±3.99 82.14±5.12 

GPN[20] 80.49±7.71 79.66±8.78 

ADSN[17] 83.44±4.16 81.91±5.23 

CM[22] 78.86±10.0 79.42±8.85 

Ours 85.93±2.31 85.77±2.48 

Model CTV→CTP CTP→CTV 

SLIR[16] 89.71±2.31 90.33±2.22 

UMDIR[15] 89.24±2.40 89.90±2.29 

GPN[20] 89.26±2.40 89.45±2.37 

ADSN[17] 90.49±2.13 91.12±1.95 

CM[22] 90.13±2.26 91.03±1.99 

Ours 92.41±1.31 92.75±2.08  
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Fig.4 Outlines of the organs in ablation study of multi-phase registration for CTV/CTP 
 

 

Fig.5 The deformation field visual results of multi-phase alignment ablation 
 
the register. Thirdly, with our MDJRS-Net, the deforma-
tion can obtain better topological properties, and the 
performance gets boost to a certain extent. Finally, the 
results of experiments show that the performance of the 
proposed method in this paper can reach state-of-the-art. 
 
Tab.2 Average dice scores and average number of 
voxels with non-positive Jacobian determinant of the 
ablation study of multi-phase registration by different 
registers 

CTV→CTP CTP→CTV 
Model 

Dice |Jφ|≤0 Dice |Jφ|≤0 

VoxelMorph 91.62 70.23 92.08 73.03 

Multi-scale 92.52 78.42 92.72 79.94 

Multi-scale 
diffeomorphism 

92.31 13.63 92.16 15.23 

Multi-scale 
diffeomorphism 

cascade supervision 
92.41 8.72 92.75 7.52 

 
In this research, the quality evaluation threshold relies 

on experience which is difficult to generalize to other 
data sets. In future work, we will use the deep network to 

search the threshold at the training stage to adapt to any 
other data distribution. 
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