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On an internet of video things (IoVT), an encoder needs to collect a large number of signal samples to improve the 
reconstruction quality. It is challenging to some occasions where the resources of an encoder are extremely limited. 
The distributed video compressive sensing (DVCS) can save a lot of resources for the encoder. For the skip-block 
coding at such an encoder, this paper proposes a motion-adaptive adjacent-reference skipping (MAS) algorithm for 
DVCS with general decoders. The proposed algorithm makes full use of the spatial-temporal correlation between 
consecutive frames, and the reconstruction quality can be improved significantly. What’s more, the skipping ratio of 
non-keyframes is adaptive to the difference of their motion-speeds. The proposed algorithm does not need to change 
any decoder, so it can be easily applied to general decoders. The simulation results show that under different skipping 
ratios, the proposed algorithm can achieve better reconstruction quality than other existing algorithms, and thus 
improve the energy-efficiency of the encoder. 
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With the emergence of new applications such as 
wearable multimedia sensing and micro-unmanned aerial 
vehicle monitoring, the internet of video things (IoVT) 
with encoder and decoder has shown increasingly 
important strategic value in the new generation of visual 
communication mainly for video signals[1,2]. Because the 
coding mode prediction, motion estimation (ME), and 
motion compensation (MC) will bring a huge 
computational burden, the traditional video encoders 
such as MPEG-x and H.26x cannot be applied to the 
encoder of a typical IoVT system[3,4]. Distributed video 
coding (DVC) can reduce the encoding complexity by 
finely modeling the correlations between consecutive 
frames only at a decoder[5], but it is still constrained by 
the Nyquist sampling theorem. The compressive sensing 
(CS) theory shows that at a sampling frequency far lower 
than the Nyquist sampling frequency, sparse signals can 
be recovered with high probability[6]. CS greatly 
improves the energy-efficiency of an encoder by 
synchronizing the sampling and compression, where a 
subrate is a ratio between the number of measurements 
and the signal dimension. Further, the video compressive 
sensing (VCS) extends the image CS, and gradually 
acquires each frame. For increasing the resolution, 
GAN[7] proposed block compressive sensing (BCS) to 
reduce the storage overhead of an encoder. Distributed 

video compressive sensing (DVCS) has the dual 
advantages of distributed video coding and BCS, so it 
has become a research hotspot in recent years[8]. 

An IoVT system enables real-time vision monitoring, 
but its monitoring time is severely limited by the 
insufficient battery capacity of visual sensor. It is a 
challenge for long-term surveillance. Video coding 
consumes the most energy from visual sensors, where a 
low-power video encoder is important to extend the 
monitoring time. The skip-block coding is used to save 
energy consumption for an encoder. Each frame 
performs a block-by-block observation process. When 
any sensor is off, a block is not observed and no energy 
is consumed, where these non-observed blocks are called 
skip-blocks. The skip-block coding might lead to the 
degradation of reconstruction quality. By utilizing the 
spatial-temporal correlation, the adaptive selection of 
skip-blocks can effectively improve its reconstruction 
quality.  

COSSALTER et al[9] utilized the three-dimensional 
(3D) sparse transformation to reduce the temporal 
redundancy information of multiple frames, which is the 
first application of spatial-temporal correlation in VCS. 
MUN et al [10] proposed the MC-based residual 
reconstruction algorithm to improve the reconstruction 
quality of DCVS. To improve the reconstruction quality 
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of predicted images by motion estimation and motion 
compensation techniques, an optimal multihypothesis 
prediction algorithm was proposed according to 
multi-reference frames[11]. Based on the temporal 
correlation of consecutive frames, ZHAO et al[12] 
proposed the re-weighting of hypothesis sets after each 
iteration. In a DCVS system, each group-of-pictures 
(GOP) includes multiple non-keyframes, so the 
inter-frame correlation decreases significantly when the 
distance between keyframe and non-keyframe increases. 
To solve this problem, ZHENG et al[13] proposed a local 
quadratic reconstruction algorithm by multi-reference 
frames. Based on the spatial-temporal correlation of 
different blocks, a new hypotheses acquisition scheme is 
applied to multihypothesis VCS[14], where the temporal 
correlation-based mechanism is used to acquire the 
matching block in the key-reference-frame, and the 
spatial correlation-based mechanism is used for the 
non-key-reference-frame, and this kind of complex 
motion estimation is difficult to be applied to a 
low-power video encoder. YUE et al[15] utilized the 
structural similarity (SSIM) as the matching criterion to 
find the optimal matching block for the current frame. 
However, the SSIM-based matching criterion 
significantly increases the computational complexity, 
which makes it unrealistic to be applied to any 
low-power encoder.   

All of the above algorithms are the research results of 
the spatial-temporal correlation mainly for improving the 
reconstruction quality of a decoder, but there are 
relatively few research results about the 
energy-efficiency of an encoder. For a low-power 
encoder, FOWLER et al[16] firstly applied the temporal 
correlation between consecutive frames. Based on the 
idea of downsampling, no observation of some blocks at 
intervals will not add coding distortion for highly similar 
non-keyframes. The CS-based terminal-to-cloud video 
transmission is proposed for a DVCS system, and the 
skip-block coding is also introduced, where the sum of 
absolute difference (SAD) is calculated to measure the 
similarity between the current frame and adjacent 
keyframe[13], and a threshold is used to mark some blocks 
with high similarity without observation. These marked 
blocks are called skip-blocks. Further, UNDE et al[17] 
combined the above-mentioned skip-block coding with 
rate-adaptive sampling, and utilized the mean of absolute 
difference (MAD) to measure the similarity between the 
current frame and the adjacent keyframe, and then 
divided the block coding mode into three types, namely, 
SKIP, LOW, and HIGH. Based on statistical 
characteristics estimation, WANG et al[18] proposed an 
adaptive rate BCS method for vision monitoring, where 
the BCS measurements of each block are used to 
estimate its mean and variance, and then all blocks are 
classified into four categories by using the Chebyshev 
inequality, but the rate-adaptive method must change its 
decoder at the same time, which makes it unsuitable for 

general decoders. LI et al[19] proposed a context-based 
allocation method for energy-efficient compressive video 
sensing, where the context information of each frame is 
extracted from its measurements instead of original 
pixels, and blocks are re-sampled into new measurements 
according to the contextual features, but the twice 
sampling of original signal increases the energy 
consumption of the encoder.  

In a DVCS system, the previous keyframe is widely 
used as the reference-frame of non-keyframes. Because 
the position of a non-keyframe goes backward in the 
same GOP, its correlation with the previous keyframe 
becomes smaller, and the previous keyframe may not be 
enough to measure the similarity between the current 
block and those reference blocks, which will affect the 
quality of video reconstruction at general decoders. 
When the similarity between the current block and the 
reference block reaches a threshold, the existing 
skip-block coding algorithms generally determine 
whether the current block belongs to a skip-block. Based 
on the existing algorithms, the number of skip-blocks is 
unstable and insufficient, and thus the encoder cannot 
achieve high energy-efficiency. The motion-speed of a 
video sequence is a very important indicator for the 
selection of skip-blocks. Therefore, this paper proposes a 
motion-adaptive adjacent-reference skipping (MAS) 
algorithm, which has the advantage that a DVCS system 
does not change any decoder. In brief, the major 
contributions of this work can be summarized as follows. 
  For the skip-block coding, an adjacent-reference- 
frame analyzing module is designed at an encoder of a 
DVCS system. By introducing adjacent frames as 
reference-frames, the encoder can accurately eliminate 
redundant information between frames. The new module 
significantly reduces the coding distortion and improves 
the reconstruction quality of a video sequence under the 
same decoder. 
  A reference-frame similarity sorting module is also 
designed at our encoder. The new module solves the 
problem that the number of skip-blocks is unstable in 
different video sequences, and thus the number of 
skip-blocks can be adaptively determined according to 
the low-power conditions of an encoder. 
  A motion-adaptive setting module is further designed 
at our encoder. According to the motion-speeds of 
different non-keyframes in the same GOP, the module 
adaptively adjusts the skipping ratio of non-keyframes. 
This new module can enhance the reconstruction quality 
of a video sequence under the same skipping ratio, which 
further improves the energy-efficiency of the encoder.  

Although the high correlation often occurs between 
adjacent frames in a video sequence, those blocks with 
extremely high similarity are still sent to the decoder in a 
DVCS system. This operation is a waste of limited 
encoder energy. It is necessary to design a simple yet 
effective method to remove redundant information 
between frames. In the case of limited resources at an 
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encoder, to further improve the energy-efficiency of the 
encoder, the observation process can be skipped for some 
blocks in similar non-keyframes. These blocks are called 
skip-blocks. Tab.1 lists the mathematical notations used 
in this paper. 

Fig.1 illustrates a typical DVCS system, where the 
blue shaded part is the main research content of this 
paper. In the figure, the blocker is used to segment a 
frame into many blocks. A skip-block coding algorithm 
will determine the similarity value of each block. At an 
encoder, the blocks of a frame are classified into 
skip-blocks and CS-blocks (non-skip-blocks). The 
location marker is used to convey the location 
information of skip-blocks. The measurements 
compensation module involves the completion of 
skip-block measurements, which will be mentioned after. 
Our encoder has the advantage that it can be flexibly 
applied to a DVCS system with general decoders. 

If an encoder utilizes the key-reference-frame for 
analyzing and thresholding[13], the main disadvantage is 
that the threshold is difficult to select, and the 
motion-speed of a video sequence has a great impact on 
the selection results of skip-blocks. In the above 
CS-based terminal-to-cloud video transmission, the 
skipping ratios of three video sequences 
(Mother-daughter, Foreman, and Soccer) with increasing 
motion-speed are 40%, 10%, and 1%, respectively. 

To solve the above problem, we propose a novel 
skip-block coding algorithm, i.e., MAS. Under a novel 
skipping framework, the proposed algorithm consists of 
three modules, as shown in Fig.2. At an encoder, a 
skip-block means no energy consumption without 
 

Tab.1 Mathematics symbol 

Symbol Definition 
i Number of blocks 
j Number of frames 
k Size of GOP 
B Size of a block 
m, n Size of observation matrix 
Xj Matrix of jth frame 
xj

i Vector of ith block of jth frame 
Rj-1 jth frame as reference-frame 
rj-1

i
 Vector of ith block of jth reference-frame 

N Total number of blocks 
mj,j-1

i
 

Mj,j-1 

Similarity of ith block between jth and (j−1)th frames 
Frame similarity between jth frame and (j−1)th 
frame 

yj
i Vector of ith block measurements 

yj
i,skip Vector of ith block measurements of jth frame, 

which is skip-block 
yj

i,CS Vector of ith block measurements of jth frame, 
which is CS-block 

y j Matrix of jth frame measurements 
Φ Observation matrix 
SP Specified skipping ratio 
MSj Motion-speed of jth frame compared to (j+1)th 

frame 
FPj Fixed skipping ratio of jth frame 
Pj Percentage of motion-speed contribution of jth 

frame 
APj Adaptive skipping ratio of jth frame 
TPj Total skipping ratio of jth frame 
UB Upper bound of TPj 
  

 

Fig.1 DVCS system with general decoders 
 

observation. By taking the block with a small similarity 
value in the current frame X as a skip-block, the 
reference-frame similarity sorting can meet the specific 
energy-efficiency requirement of an encoder. The 
skipping ratio depends on the current low-power 
conditions of an encoder. When a DVCS system works 
in such scenarios as a battery-driven encoder, it may be 
required to reduce the energy consumption by half. The 
key-reference-frame analyzing and thresholding will not 
meet the requirements. However, the novel skipping 
framework can save half the energy by controlling every 
non-keyframe to skip the observation process of half 
blocks. Under the novel skipping framework, the 

proposed skip-block coding algorithm will be described 
after. 

 

Fig.2 Novel skipping framework 

  Let 1 2{ , , , }N
j j j jX x x x  be a non-keyframe, and 

1 2
1 1 1 1{ , , , }N

j j j j   R r r r  be the reference-frame of the 
non-keyframe. xj

i and rj-1
i respectively denote the ith block
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of the non-keyframe and its reference-frame, and N is the 
number of blocks. Then the similarity value of the 
current frame is as follows: 

1
, 1 , 1 , 1[ ,..., ]N

j j j j j jm m   M
 

         
1 1

1 1[ ( , ), ..., ( , )],N N
j j j jSAD SAD x r x r         (1) 

where mj,j-1
i is a constant that denotes the similarity 

between the block xj
i and rj-1

i. The definition of SAD(·) is 

1
( , ) .i i i i

j j j jSAD  x r x r
                      

(2) 

The existing skip-block coding algorithms use the 
previous keyframe as the reference of a non-keyframe. If 
the non-keyframe located in the back of a GOP refers to 
the previous keyframe, the similarity value will be 
inaccurate. That is, the keyframe may not be enough to 
measure the similarity between the current block and the 
reference block. When the skip-blocks are improperly 
selected, the reconstruction quality of a video sequence 
will decrease significantly. 

Let 1 2

1 1 1 1{ , , , },NX x x x 1 2

5 5 5 5{ , , , },NX x x x and
1 2

6 6 6 6{ , , , }NX x x x be the first frame, the fifth frame and 
the sixth frame in the same GOP of a video sequence, 
where the first frame is a keyframe. For X6, when taking 
X1 as a reference, the similarity value of its ith block is 

1,6 1 6( , ).i i im SAD x x                       (3) 
When taking X5 as a reference, the similarity value of 

its ith block is 
5,6 5 6( , ).i i im SAD x x                       (4) 

  If m1,6
i<<m5,6

i, the key-reference-frame analyzing and 
thresholding will regard the ith block as a skip-block, 
while the adjacent-reference-frame analyzing will not. 
Fig.3 demonstrates the diagram of adjacent-reference- 
frame analyzing. A skip-block means that the block is not 
observed, and only the position information of the block 
is sent. Before reconstructing the video sequence, the 
decoder needs to complete the measurements of 
skip-blocks. In order not to change any decoder, the 
adjacent-reference-frame analyzing module will 
compensate the measurements of the skip-block with the 
measurements of the adjacent frame. If the block 
corresponding to the adjacent frame is also a skip-block, 
the corresponding block of the previous frame will be 
taken. Fig.4 illustrates our skip-block measurements 
compensation. 

 

 
Fig.3 Diagram of adjacent-reference-frame analyzing 

 
Fig.4 Skip-block measurements compensation of 
adjacent-reference-frame analyzing 
 

The motion-speed difference of various video 
sequences causes the number of skip-blocks by the 
threshold-based sorting will be extremely unstable. Our 
motion-adaptive setting module is based on the 
motion-speed calculation of each non-keyframe. A slow 
motion-speed of a non-keyframe means that it is highly 
similar to the previous frame, and then more skip-blocks 
will be extracted from this particular frame. Hence, 
different numbers of skip-blocks can be allocated to 
different non-keyframes according to their 
motion-speeds. Fig.5 illustrates the flow chart of the 
motion-adaptive setting. The frames in a GOP are 
divided into reference part and adaptive part. The 
skipping ratio of frames in the reference part is a 
specified ratio, and the skipping ratio of frames in the 
adaptive part consists of fixed and adaptive ratios. 

 

 
Fig.5 Flow chart of the motion-adaptive setting 

 
Under the novel skipping framework, Tab.2 gives the 

main pseudo code of the proposed MAS algorithm, 
where the specific procedures or some other details are 
explained as follows. 

(1) k frames (j = 1, 2, 3, …, k) in a GOP (k is even) are 
considered. The 1st to (k/2)th frames are classified as the 
reference part, and the rest are classified as the adaptive 
part. With the specified skipping ratio SP, the skipping 
ratio of frames in the reference part is SP, and the 
motion-speed MSj (j = 1, 2, 3, … k/2) of each frame in 
the reference part is calculated by 

1 1
.j j jMS  X X                         (5) 

(2) The percentage Pj (j=1, 2, 3, …, k) of the 
motion-speed contribution of each frame in the reference 
part is 

/2

1

max( )
,

( max( ))

j
j k

j
j

MS
P

MS






MS

MS
                  

(6)
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where MS is the vector that consists of MSj, and 
max(MS) is the maximum MSj in MS. 
 

Tab.2 Pseudo code of the proposed MAS algorithm 

Algorithm 1  MAS 
Input: A GOP Xj (j=1, 2, 3, …k) with the GOP size k,  

the specified skipping ratio SP,  
the fixed-skipping allocation parameter W,  
the block size B,  
the total number N of blocks of Xj, 

Output: The skipping ratio of each frame TPj. 
1: for j = 1 to k/2 do 
2:   TPj = SP; 
3:   MSj = abs (Xj – Xj+1); 
4: end for 
5: for j = 1 to k/2 do 
6:   Pj = (MSj – max(MS)) / (sum(MS– max(MS))) 
7: end for 
8: for j = k/2 + 1 to k do 
9:   FPj = W * SP 
10:  APj =P(j – k/2) * k/2 * (SP –FPj) 
11:  TPj =FPj + APj 
12: end for 
13: for j = k/2+1 to k do 
14:   if TPj>UB do 
15:      for j = k/2+2 to k do 
16:        TPj =TPj + (TPj– UB)/ (k– j) 
17:      end for 
18:      TPj = UB 
19:   end if 
20: end for 
21: xi 

j = im2col (Xj , B) 
22: for i = 1 to N do 
23:mj,j-1

i = SAD(xj
i, xj-1

i) 
24: end for 
25: sort(Mj,j-1) 
26: yj

i,skip =yj-1
i 

27: yj
i,CS =Φxj

i 
28: yj = yj

i,skip + yj
i,CS 

 
(3) To ensure better reconstruction quality for slow 

motion-speed frames, the fixed skipping ratio FPj (j = 
k/2+1, k/2+2, k/2+3, …, k) for each frame in the adaptive 
part is calculated by 

,jFP W SP                              (7) 
where W is a fixed-skipping allocation parameter. 

(4) The adaptive skipping ratio APj (j = k/2+1, k/2+2, 
k/2+3, …,k) of each frame in the adaptive part is 
calculated by 

( /2) ( ).
2j j k j

kAP P SP FP   
                

 (8) 

(5) The total skipping ratio TPj of each frame in the 
adaptive part is calculated by 

.j j jTP FP AP                            (9) 
(6) To ensure better reconstruction quality for fast 

motion-speed frames, we set an upper bound UB for 
frame in the adaptive part. If TPj>UB, the extra skipping 
ratio is evenly distributed to other frames in the adaptive 
part. 

The two main parameters of the MAS algorithm are 
the fixed-skipping allocation parameter W and the upper 

bound UB. Theoretically, the skipping ratio of a frame is 
from 0 to 100%. A 100% skipping ratio means that the 
current frame is not observed at all, which is 
unreasonable. To avoid the extreme skipping ratio, the 
MAS algorithm robustly set the two parameters. W is the 
minimum proportion of the specified skipping ratioper 
frame, typically W=0.5. In the case that the specified 
skipping ratio SP<0.5, UB is set to twice the specified 
skipping ratio, and 0.9 in other cases. The principle of 
the MAS algorithm is that the motion-speed of the frame 
in the first half of the GOP (frames in the reference part) 
is used as a reference for the frame in the second half of 
the GOP (frames in the adaptive part). The skipping ratio 
of the frame in the adaptive part is estimated according 
to the motion-speed of the frame in the reference part. 
Hence, the frame with slow motion-speed will be 
assigned a high skipping ratio precisely, which can 
improve the reconstruction quality. 

The proposed skip-block coding algorithm is 
compared with some state-of-the-art algorithms on 
MATLAB R2020b. The simulation platform is 64-bit 
Windows 10, IntelCore(TM) i3-10500 CPU, 3.60 GHz, 
16 G RAM. The experiments are based on the DVCS 
system with general decoders, and the Gaussian random 
matrix is used as the observation matrix. The first 25 
frames of the standard test sequences (Coastguard, 
Soccer, Foreman, and Football) are used as experimental 
videos. The motion-speeds of these sequences are from 
slow to fast, and almost all motion features are included. 
Similar to the existing algorithms, the keyframe subrate 
is set to 0.7, and the non-keyframe subrate varies from 
0.2 to 0.4. The GOP size is 8 and the block size is 16×16 
in all experiments, and these parameters can well balance 
the computational overhead of an encoder and the 
reconstruction quality at a decoder. 

We will compare the performance of the proposed 
MAS algorithm with equal skipping (ES)[16], random 
skipping (RS)[12], key-reference-frame analyzing and 
thresholding (KAT)[17]. To test the ablation performance, 
we delete the motion-adaptive setting module in the 
proposed MAS algorithm, and name it as MAS-. The 
skipping ratio of an encoder is 30%, 50%, and 70%. To 
ensure fairness, all algorithms are performed under the 
same skipping ratio, and the reconstruction algorithm is 
always the reweighted residual sparsity algorithm at 
general decoders[12]. 

The comparisons of the GOP-wise average peak 
signal-to-noise ratio (PSNR) under 50% skipping ratio 
are shown in Tab.3 for instance. The keyframe subrate 
and non-keyframe subrate are 0.7 and 0.4. The maximum 
value is marked in bold. In most cases, the MAS has the 
best GOP-wise average PSNR in all video sequences and 
all GOPs. Under different non-keyframe subrates and 
different skipping ratios, the average PSNR results of 
MAS, MAS- and KAT are shown in Fig.6. It can be seen 
that compared with KAT, the performance of MAS- is 
improved at each subrate and each skipping ratio, and the 
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largest improvement is about 1 dB. And for MAS, 
compared with KAT, the largest improvement is about 
1.5 dB. For a video sequence, the higher the skipping 
ratio is, the higher the improvement of MAS and MAS- 
compared with KAT. For those video sequences with fast 
motion and complex texture, such as Football, many 
non-information-redundant blocks are selected as 
skip-block by using the existing skip-block coding 
algorithms. Correspondingly, our MAS algorithm utilizes 
adjacent frames as a reference, which can more 
accurately find the information-redundant blocks and 
then mark them as skip-blocks. 

The addition of the motion-adaptive setting module 
makes the performance of MAS better. It can be seen 
from Fig.6 that as compared with MAS-, the largest 
improvement of MAS is about 0.2 dB. Similarly, for the 
same sequence, compared with MAS-, the higher the 
skipping ratio is, the higher the improvement of MAS is. 
Because the larger the specified skipping ratio is, the 
greater the difference between the skipping ratio of each 
frame within the same GOP becomes. What’s more, 
compared with MAS-, the faster the motion-speed of a 
sequence is, the higher the improvement of MAS is. 
Compared with a fixed skipping ratio to all 
non-keyframes, the adaptive skipping ratio can bring 

better reconstruction quality. 
 

Tab.3 GOP-wise average PSNR (dB) under the 50% 
skipping ratio 

Video sequence GOP Algorithm 
Coastguard Soccer Foreman Football 

ES 29.09 22.41 28.31 21.64 

RS 29.29 23.19 28.06 21.85 

KAT 30.94 30.61 34.99 26.15 

MAS- 31.00 31.19 36.11 26.43 

I 

MAS 30.99 31.26 36.01 26.60 

ES 28.59 22.84 27.30 20.64 

RS 28.83 23.57 27.00 21.47 

KAT 30.84 29.74 29.92 24.35 

MAS- 30.95 30.13 31.07 25.00 

II 

MAS 31.00 30.32 31.40 25.17 

ES 27.72 20.74 27.30 20.61 

RS 28.13 21.79 27.29 20.89 

KAT 30.35 28.90 31.15 24.45 

MAS- 30.53 29.14 32.77 25.09 

III 

MAS 30.65 29.75 32.94 25.01 

 

 

Fig.6 Average PSNR results for different algorithms under different non-keyframe subrates and skipping ratios 
 

Fig.7 shows the influence of the skipping ratio on the 
reconstruction quality. The vertical coordinate is the 
average PSNR for all subrates. It can be seen from Fig.7 
that the reconstruction quality almost decreases linearly 
with the increase of skipping ratio, and the 
reconstruction quality decreases more rapidly for 
fast-motion video sequences. The proposed MAS and 
MAS- algorithms not only improve the reconstruction 
quality at all skipping ratios, but also reduce the descent 

speed of reconstruction quality when the skipping ratio 
increases. 

To illustrate the performance advantage of our MAS 
more clearly, Fig.8 shows the comparison of 
frame-by-frame PSNR results of the KAT, MAS- and 
MAS under the keyframe subrate of 0.7 and 
non-keyframe subrate of 0.4. It can be seen that the 
performance of the MAS algorithm is always 
competitive especially for highly dynamic video.
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Fig.7 Average PSNRs for different skipping ratios 
 

Finally, we evaluate the computational complexity of  

the proposed algorithm. Compared with existing 
skip-block coding algorithms, the extra runtime of the 
MAS algorithm is mainly determined by the computation 
of adaptive skipping ratios. We choose the Foreman 
sequence as a typical example. The relative extra runtime 
is the incremental ratio between the average coding 
runtime of the MAS algorithm and that of the RS 
algorithm. For the MAS and RS algorithms, Tab.4 gives 
the average coding runtime per frame of the Foreman 
sequence under different skipping ratios. As can be seen 
from the table, the relative extra runtime only increases by 
11.49% at most, which can significantly improve the 
reconstruction quality of video sequence with such a small  
increase  in  computational  complexity. Furthermore, 
the encoder under higher skipping ratio runs faster due to 
the fact that high skipping ratio savesmore runtime for the 
block-by-block observation process. 

 

 

Fig.8 Frame-by-frame PSNR results for different algorithms 
 

Tab.4 Average coding runtime per frame of the 
Foreman sequence for the MAS and RS algorithms 

Skipping ratio Algorithm Runtime (s) Relative 
extra RS 9.340 30% 

MAS 10.096 
8.09% 

RS 8.884 50% 
MAS 9.828 

10.63% 

RS 8.564 70% 

MAS 9.548 
11.49% 

 
Our MAS algorithm can enhance the reconstruction 

quality of video sequence by mining the spatial-temporal 
correlations of consecutive frames. The proposed 
algorithm designs a reference-frame similarity sorting 
module that can stabilize the number of skip-blocks. In 

addition, the proposed algorithm is suitable for general 
decoders without any change. Currently, the proposed 
algorithm selects the measurements of the previous 
frame to compensate for the measurements of the 
skip-blocks, and subsequent work needs to find a more 
suitable skip-block compensation mechanism to reduce 
blocking artifact. 
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