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Implicit polynomials (IPs) are considered as a powerful tool for object curve fitting tasks due to their simplicity and 
fewer parameters. The traditional linear methods, such as 3L, MinVar, and MinMax, often achieve good performances 
in fitting simple objects, but usually work poorly or even fail to obtain closed curves of complex object contours. To 
handle the complex fitting issues, taking the advantages of deep neural networks, we designed a neural network model 
continuity-sparsity constrained network (CSC-Net) with encoder and decoder structure to learn the coefficients of IPs. 
Further, the continuity constraint is added to ensure the obtained curves are closed, and the sparseness constraint is 
added to reduce the spurious zero sets of the fitted curves. The experimental results show that better performances 
have been obtained on both simple and complex object fitting tasks. 
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Implicit polynomials (IPs) are particularly suitable for 
vision tasks like fast shape registration[1-3], image com-
pression[4], recognition[5,6], smoothing and denoising[7,8], 
etc. Compared with B-splines[9-11], the advantages of IPs 
include fewer parameters, algebraic/geometric invariants, 
and robustness against noise and occlusion[12]. And 
Ref.[7] further shows IPs have the capability of recover-
ing object shape with missing data in three-dimensional 
(3D) surface modeling. 

To obtain the proper coefficients of the polynomial, 
linear methods, like 3L[1], gradient-one[8], MinMax, 
MinVar[13], are proposed in the framework of least 
square: minimizing the mean square error (MSE) be-
tween the predicted value and 0. Through matrix opera-
tion, the above methods can fit simple objects well with a 
polynomial. However, when handling more complex 
objects which have more inflection points, the fitting 
results are not good enough. This shows that the tradi-
tional linear methods lack the ability to handle complex 
objects. Therefore, a new method is considered to be 
proposed to solve this problem. 

With the successful applications in computer vision[14] 
and natural language process[15], the structure of the en-
coder-decoder[16] has received a lot of attention for its 
strong fitting ability. Taking the advantage of the fitting 

ability of the encoder-decoder, Encoder-X[17] was pro-
posed to learn the coefficients with deep model and 
achieved better performance. Along its way, a neural en-
coder net continuity-sparsity constrained network 
(CSC-Net) is designed to receive the input of ordered data 
points (zero sets) and output the coefficients of the poly-
nomial. Then, the decoder takes the coefficients as input to 
revert the implicit polynomial. The obtained zero sets are 
the fitting result of the object. Different from Enocder-X 
which uses data augmentation to constrain the search 
space, we employ continuous constrain to obtain better 
fitting results. Furthermore, to make the fitting results 
more smoothly, sparse techniques are used for implicit 
polynomial fitting. And our contributions can conclude as 
follows. An encoder-decoder network CSC-Net is de-
signed to find the best coefficients of a polynomial to fit 
the objects. Prior knowledge like continuity is added as 
constraining into the network to make the model find 
closed curves. The sparse technique is used to make the 
fitting curve as smooth as possible. The capability of IPs 
of recovering objects from missing data in 
two-dimensional (2D) space is studied. 

Formally, for a 2D object, the algebraic curve repre-
sented by a 2D IP with degree n is given by 
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To make the representation more concisely, we use 
matrix to represent the equation as 
  T( , ) 0,nf x y  M A                         (2) 
where 

T[1, , , ,..., ] ,nx y xy yM  (3) 
T

00 10 01 11 0[ , , , ,..., ] .na a a a aA  (4) 
Matrix M is the monomial matrix, which has 

( 1)( 2) 2p n n   terms. And A is the coefficient vec-
tor which also has p terms. 

The classical and simplest way to fit an algebraic 
curve to data is to minimize the algebraic distance over 
the set of given data points as 
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where m is the data number, and S=MMT is the scatter 
matrix of the monomials. The solution of Eq.(2) is the 
unit eigenvector A with smallest eigenvalue of SA=λA. 
But the fitting results of this method always produce the 
polynomial with discontinuous curves. This is because 
the optimized distance is not the exact distance between 
the data points and the curves. Although there have many 
other distance functions, algebraic distance is used for 
computation efficiency.  

To improve the fitting performance, different con-
straints are added into the optimized equation by proc-
essing scatter matrix S. The 3L[1] method adds two more 
curves to constrain the 3D surface to go through the ad-
ditional curves to make the surface as steep as possible 
around the zero set, thus improving the stability and fit-
ting performance. Different from 3L, the gradient-one[8] 
method achieves comparable results through constraining 
the continuity of the fitting polynomial curves. Specifi-
cally, to make the directional derivatives parallel to the 
tangent and the gradients parallel to the normal, further-
more, to improve the coefficient stability, MinMax and 
MinVar[13] methods are proposed by regularizing the 
scatter matrix. 

For more elegant capability, RR[8] method is proposed 
to handle the problem of spurious zero sets by forcing 
the variables that do not contribute significantly to the fit 
attain values as close to zero as possible. QR decomposi-
tion[18] is used to adaptively obtain the best degree of 
polynomial. And our work focuses on improving the 
fitting performance of more complex objects by the deep 
neural network. Inspired by Encoder-X[17], to make full 
use of deep neural network to obtain better fitting results, 
our work uses the continuity and sparse constraints to 
constrain the search space. Different from us, Encoder-X 
uses data augmentation to constrain the search space. 
However, this will increase the model size and when 
handling with complex objects, the results are not ideal. 

The whole framework of our method is shown in 
Fig.1. The CSC-Net is composed of encoder and de-

coder. The objects that need to be fitted are processed 
with a contour tracking algorithm to obtain ordered data. 
This process is to obtain the tangent vector and norm 
vector of the zero set points because tangent and norm 
vectors will be used in the decoder. Then the encoder 
encodes input data to coefficients, the decoder receives 
coefficients, tangent vector, and norm vectors to recover 
polynomial and compute loss. Finally, after the model 
update is finished, the fitting curve is plotted with 
learned coefficients. 

 

 

Fig.1 Framework of our method 

For the input of the encoder has two dimensions, and 
also for the future extension in fitting 3D objects, we set 
the first layer of the encoder as a convolutional layer. 
Compared with the fully-connected layer, the convolu-
tional layer can reduce parameter size and also has a 
faster training speed. The shape of the last layer is the 
number of coefficients with degree n . 

Formally, the input of encoder is denoted as follows 
2[ , ], mX Y R  input input . (6) 

And the encoder is denoted as Encoder, it is a mul-
ti-layer neural network, and the output of the Encoder is 
calculated by 

ˆ ˆEncoder( ), ,pR A input A  (7) 

where Â is the predicted coefficients of the fitted poly-
nomial. 

The decoder receives the output of encoder to revert 
the polynomial as 
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The reverted polynomial has the form of Eq.(9). ˆija is 
the predicted coefficient of the monomial i jx y . 

Same as the traditional linear method, our method uses 
the algebraic distance as training goal. Formally, with the 
predicted value and the true value, the training object is  
to minimize the mean square loss as 
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This loss has no constrain in search space, and only 
requires the value of the pixel points to be close to zero. 
This will cause the problem of discontinuity which
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makes the curve is not a closure. To make the curve as a 
closed curve, we add the constrain of continuity as[8] 
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where fx is the partial derivative in the x-axis, and fy is the 
partial derivative in the y-axis. And Nx and Ny are the 
norm vectors of the object. C1 is the mean cosine dis-
tance of the norm vector and the gradient vector, which 
should be close to 1. The norm vectors are parallel to 
gradient vectors. 

Furthermore, to reduce the number of spurious zero 
sets, we use sparse technique to make the coefficients 
which span small spaces to be close to zero: 
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Finally, our loss function is the weighted sum of three 
parts as 

1 2| 1 | ,loss MSE C C      (13) 

where μ and λ are penalty factors. 
IPs had been used to fit simple objects like butterfly, 

boot, etc[1,8,13]. We select butterfly, boot, airplane as basic 
simple object as a part of our dataset. They are shown in 
Fig.2. Besides, to access the stability of traditional me-
thod, we add another object bear into the dataset. 

 

 
Fig.2 Dataset of fitting objects 

 
Finally, to show the capability of fitting complex objects  

which have more bending points of our model, we add 
duck, rabbit, bear1, etc to the dataset. They are also 
shown in Fig.2. 

We use the Adam as optimizer, and set the learning  
 

rate as 0.01, μ=0.1 and λ=0.5. To compare the perform-
ance of CSC-Net with others, we choose the 
well-performed methods 3L, MinMax, MinVar, and En-
coder-X as baselines. For each object, the same maxi-
mum degree n is used in different methods. 

To show the effectiveness of constrains added by 
CSC-Net, we conduct ablation study on all the objects. 
From Fig.3 we can see that making the predicted poly-
nomial value close to zero alone is not enough to obtain 
ideal fitting curves. 

Except the simple objects like butterfly, boot, airplane, 
and bear, the obtained polynomial cannot make the curve 
be a closure. The continuity constraint C1 can make the 
curve be a closed one. Because the model requires the 
directional derivative of the polynomial to be perpen-
dicular to the tangent and parallel to the norm vector of 
the true curves. The obtained curves need to be a closed 
curve to reach a low loss. Experimental results show the 
effectiveness of C1 constraint.  

Furthermore, C2 reduces the spurious zero sets by 
making the coefficient as sparse as possible to decrease 
the small space spanned by coefficients. This is useful 
because when dealing with complex objects like rabbit, 
duck, etc, it has to use higher maximum degree n to fit 
the object, thus the number of coefficients expand rap-
idly and has more spanned small space which is not 
needed. 

The proposed model CSC-Net is compared with the 
methods of 3L, MinMax, MinVar, and Encoder-X. The 
former three are traditional methods, while Encoder-X 
and CSC-Net are neural network-based methods. The 
difference between Encoder-X and CSC-Net is the proc-
ess of constraint. In Encoder-X, constraints are added 
through data augmentation: scaling the curve in and out, 
and making the value as positive number and negative 
number inside and outside. This constraint is treated 
more like 3L. However, in CSC-Net, the constraints are 
added by directional derivatives and normals. 
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Fig.3 Ablation study 
 
The fitting results are shown in Fig.4. From Fig.4 

we can find that neural network-based methods have 
more stability than the traditional methods. While in  

 
simple objects like butterfly, boot, airplane, bear, and 
duck1, all the methods can obtain good fitting results. 
However, the fitting results get worse when dealing 
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with complex objects. The traditional methods tend to 
fit the local optimal, while losing the relatively better 
global best. Such characteristic can be shown in some 
objects. The MinMax fits every detail of bear1, but in 
 

most times, it cannot obtain the global optimal thus 
prioritizes local optimal, and the fitted curve fits part 
of the curve very well. The 3L and MinVar are the 
same. 
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Fig.4 Comparison with other methods: (a) 3L; (b) MinMax; (c) MinVar; (d) Encoder-X; (e) CSC-Net 

As deep model-based methods, Encoder-X and 
CSC-Net can both obtain better results than traditional 
methods. Especially in fitting objects like rabbit and 
duck, the fitting results surpass others significantly. 
However, in fitting objects like airplane, bear, bear1, etc, 
Encoder-X has limited performance. This illustrates that 
the continuity constraint is effective and has better prac-
tical performance. 

Judging from the number of spurious zero sets, 3L, 
MinMax, MinVar and Encoder-X have much more un-
necessary curves. This shows that sparse constraint can 
reduce the number of spurious zero sets by making the 
coefficients of polynomial as sparse as possible. Because 
unnecessary coefficients with small values have a big 
impact on the reverted curves. 

There have been some works on showing the inference 
ability to recover the contour with missing data in 3D but 
the same analysis is lacked in 2D. Thus, we run the related 
experiments to see if IPs have the same ability in 2D. 

We manually removed a certain degree of contour da-
ta, and specifically, 10% data points are removed. From 
Fig.5, we can see that the IPs can infer the contour of the 
missing part. In all 16 objects, the learned IPs are a good 
complement to the missing parts. This experiment results 
show IPs also have the ability to infer the missing part of 
the objects in 2D object. 

However, from Fig.5 we can also see that IPs have li-
mited inference ability and the missing part will influ-
ence the fitted precision. And it is easier for IPs if the 
missing part is smoothy. 

When evaluating the space complexity of deep model,  
it usually uses parameter size and FLOPs. The smaller 
the parameter size and FLOPs are, the better the per-
formance is. 

        

        
Fig.5 Fitting results of missing data 

In Tab.1, (a) represents the model of Encoder-X, and 
(b) represents the CSC-Net. From Tab.1 we can find that 
the parameter size and FLOPs are significantly smaller 
than those of Encoder-X. In average, CSC-Net is 2.65% 
of Encoder-X. 

Tab.1 Space complexity comparison 

Parameter size FLOPs  
(a) (b) (a) (b) 

Airplane (6) 67.80M 1.64M 67.77M 1.65M 
Bear (4) 81.91M 2.24M 81.89M 2.26M 

Bear1 (14) 90.60M 2.63M 90.58M 2.65M 
Bear2 (10) 59.42M 1.29M 59.40M 1.30M 
Bear3 (12) 87.31M 2.48M 87.29M 2.50M 
Boot (6) 75.69M 1.98M 75.67M 1.99M 

Butterfly (4) 74.97M 1.95M 74.95M 1.96M 
Cat1 (10) 102.07M 3.11M 102.05M 3.13M 
Cat2 (14) 69.65M 1.73M 69.63M 1.74M 
Dog (12) 79.85M 2.17M 79.83M 2.18M 
Duck (16) 72.22M 1.85M 72.20M 1.86M 
Duck1 (4) 87.36M 2.48M 87.33M 2.49M 
Fish3 (16) 80.50M 2.20M 80.48M 2.22M 
Good (12) 66.05M 1.58M 66.03M 1.59M 
Guitar (10) 75.24M 1.97M 75.22M 1.98M 
Rabbit (16) 64.95M 1.54M 64.93M 1.54M 

Average 77.22M 2.05M 77.20M 2.07M 
 
Tab.2 lists the time cost of Encoder-X and CSC-Net. 

Compared with space complexity, the time cost between



·0064·                                                                         Optoelectron. Lett. Vol.19 No.1 

CSC-Net and Encoder-X is not conspicuous. For com-
puting the derivative of predicted curve, CSC-Net needs 
more time to update the network. Overall, CSC-Net can 
achieve better performance than Encoder-X in smaller 
time and space complexity. 

Tab.2 Time complexity comparison 

Object (a) (b) Object (a) (b) 
Airplane 106.1 s 79.2 s Cat2 228.0 s 188.9 s 

Bear 108.5 s 76.1 s Dog 164.1 s 163.3 s 
Bear1 192.7 s 224.7 s Duck 306.7 s 241.1 s 
Bear2 131.1 s 107.7 s Duck1 152.5 s 65.4 s 
Bear3 168.5 s 166.1 s Fish3 325.5 s 248.9 s 
Boot 130.1 s 78.0 s Good 154.5 s 152.4 s 

Butterfly 143.2 s 61.3 s Guitar 138.9 s 128.0 s 
Cat1 213.6 s 166.2 s Rabbit 193.4 s 230.5 s 

 
In this paper, to enhance the fitting performance of IPs 

in complex objects, we propose a neural network 
CSC-Net in an encoder-decoder structure to achieve that 
goal. Although our model has good performance, the 
maximum degree used by each polynomial is high, thus 
it needs sparse constraint to obtain better results. How-
ever, fractional polynomial can have much more expres-
sive ability when the maximum degree is the same with 
polynomial. In future, we will consider to transfer this 
model into fractional polynomial to obtain better per-
formance. 
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