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A BLG1 neural model implements the unique looming 
selectivity to diving target* 
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The bistratified lobula giant type 1 (BLG1) neuron is an identified looming-sensitive neuron in crab’s visual brain that 
demonstrates special sensitivity to diving targets, or descending approaching motions. In this paper, a novel neural 
model is proposed to shape such unique selectivity through incorporating a bio-plausible feedforward contrast inhibi-
tion synapse and a radially extending spatial enhancement distribution. Herein the synaptic connections and neuronal 
functions of this model are placed within a framework for matching and describing underlying biological findings. The 
systematic and comparative experiments have validated the proposed computational model that reconciles with the 
characteristics of BLG1 neurons in crab. 
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Crabs are applicable animals for researching the neuro-
physiological bases of visual signal transferring and 
transmitting in arthropod visual systems, since they ex-
hibit multiple-stage, and complex visually-guided be-
haviors[1]. Specially, a group of motion-sensitive neurons 
distributed on the lobula are thought to be the key in 
perceiving target motions and leading specific 
self-actions. These neurons are named as monostratified 
lobula giant type 1 and 2 (MLG1 and MLG2) neurons, 
bistratified lobula giant type 1 and 2 (BLG1 and BLG2) 
neurons[2]. The MLG1s and MLG2 neurons are assumed 
to be the central factors in continuously detecting and 
regulating the escaping direction and velocity when fac-
ing predators. Therefore, a lot of neuroanatomical and 
psychobiology studies have been made and tried to quan-
titative how the visual stimulus affect the neuronal re-
sponses. Based on the research findings, kinds of models 
have been proposed from neuronal dynamic aspect[3,4] 
and computer vision[5].  

Although the underlying mechanism of BLG1 neuron 
is still unclear, the BLG1 responds to approaching mo-
tions earlier than MLGs, and appears sensitivity to 
stimulus elevation[2]. The crabs just categorize an ap-
proaching target as a prey and a predator based on the 
elevation information[2]. However, little has been done 
on modeling and mimicking the BLG1 neuron. 

Here, we provide insight into modeling a neural model 
with motion perception enhancement for implementing 
the selectivity of BLG1 neurons to descending proximity 
of moving target, or diving target. The proposed model 
incorporates a bio-plausible feedforward contrast inhibi-
tion synapse and a spatial enhancement distribution. 

Our previous computational model of MLG1s neu-
ronal ensemble preliminarily mimics the crab’s visual 
system[5]. Building upon the neuromophic architecture of 
the MLG1s model, herein we propose the BLG1 compu-
tational neural network with special selectivity of de-
scending proximity. The proposed BLG1 neuromophic 
architecture is shown in Fig.1. Specially, a bio-plausible 
normalization mechanism and a feedforward contrast 
inhibition synapse have been introduced to accommodate 
the contrast invariance (N and C), and shaping the unique 
selectivity to diving target via the radially extending spa-
tial enhancement distribution (Kae). Taking inspiration 
from the latest studies of the Drosophila visual sys-
tem[6-8], the basic function of the normaliza-
tion-mechanism-based feedforward contrast inhibition 
synapse is that the visual interneuron compares the in-
tensity with its neighbouring visual inputs, and com-
presses the visual signal in a fixed range to maintain in-
put invariability. The formulation of the proposed neural 
model is elaborated as follows. 
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Fig.1 Neuromophic architecture of the proposed BLG1 neural network model (The proposed model utilizes the 
classic lateral-inhibition-mechanism-based feedforward neural network (P, E, I, S and G layers) and the novel 
normalization-mechanism-based (N) contrast inhibition synapse (C). Moreover, a radially extending spatial en-
hancement distribution (Kae) characterizes the unique diving approaching motion selectivity.)  
 

The photoreceptor layer mimics the function of the 
panoramic view of the crab, which computes the pix-
elwise luminance changes at successive frames. 

ˆ( , , ) | ( , , ) ( , , ) ( 1)d |,P x y t L x y t L x y t t s s       (1) 
where δ is the unit impulse function. 

The principle of the bio-plausible normalization 
mechanism is comparing the luminance of center point 
with its neighboring local receptive fields, and transfer-
ring the compared value into a fixed range[7]. The calcu-
lation can be defined as follows 
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where α1 is luminance variance sensitivity of a local re-
ceptive field. The instantaneous parameter ( , , )P x y t  is 
the center point value, which has been filtered by a clas-
sical Gaussian-kernel WG with standard deviation σ1. 
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The separated excitation pathway and time-delayed 
inhibition pathway characterize the competition between 
local excitations and lateral inhibitions, which is a com-
mon feature in many crustaceans and insects[9]. The ex-
citation pathway signal E equals the current normalized 
luminance change R, and the time-delayed inhibition 
pathway could be described as 
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Subsequently, signals from excitation pathway and in-

hibition pathway are linearly integrated, and then filtered 
by a rectified linear unit (RELU) activation function. The 
summation S can be computationally presented as 

( , , ) RELU[ ( , , ) ( , , ),0].iS x y t E x y t w I x y t       (7) 
Mathematically speaking, the next grouping layer is a 

spatial filter to reduce isolated noises against cluttered 
scene. Specifically, Ce is the smoothed S via a mean fil-
tering kernel, which is typically sized in a 3×3 matrix. 
The G layer calculations are as follows 
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where w is updated in real time, Cw is a constant coeffi-
cient, and c is a small real number. 

Furthermore, the small excitation signals could be 
eliminated by a threshold Tg as 
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The mechanism of contrast inhibition synapse is 
achieved through the competition between the center 
point with peripheral surroundings.   

The formulation of Ĉ  is  

C
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where WC is the contrast inhibition kernel (see Fig.2), 
which can be defined as 
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The current C  is calculated by its previous value and 
the difference of two successive competitive values Ĉ . 
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where α2 is a temporal smooth coefficient which depends 
on a time constant τ1 and the temporal sampling interval τi. 

 
Fig.2 An example of the WC kernel in 3D view, where 
λ1=1, v=0.25, ζ=3  
 

The motion excitation signal from the G layer and the 
contrast inhibition synaptic signal compete with each 
other, which can be defined as follows 
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where k̂  represents the motion cues in crab’s pano-
ramic view.  

According to spatial distortion mapping of the pano-
ramic receptive field, neuron signals in the central region 
represent the motion cues that happen in the sky area. 
Thus, we set a radially extending spatial enhancement 
distribution Kae, to selectively enhance the signal gener-
ated by the descending approaching motions. The Kae is 
shaped like a two-dimensional Gaussian kernel. The en-
hanced motion cues k and Kae are formulated as follows 
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To integrate the motion cues, we use a rectifying op-
eration to calculate the membrane potential MP, that is  

( ) ( , , )d d .MP t k x y t x y                    (20) 

And NMP is the normalized MP by the Softsign func-
tion as 

-1
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If the NMP continuously exceeds the spiking thresh-
old, the BLG1 neuron could generate spikes, and the 
successive neuronal spikes indicate potential descending 
approaching event. The parameters of the proposed 
BLG1 neural model are listed in Tab.1. 

 
Tab.1 Parameters setting 

Name Value Name Value Name Value 
α1 3 u, v 5 σ1 5 
wi 0.3 Cw 4 Δc 0.01 
Tg 0, 1.5 τ1 140 α3 1.5 
Ts 0.45 nsp 4   

Next, we systematically test and investigate the pro-
posed neural model. Within this study, the experimental 
videos contain synthesized approaching stimuli within 
pure backgrounds and real nature background. The resolu-
tion of all experimental videos is 720×720 pixels, and the 
sampling rate is 60 fps. To verify the effectiveness and 
robustness of the contrast inhibition synapse, we set a 
group of test videos with different contrasts, of which we 
use the contrast evaluation ξ to estimate the contrast vari-
ance between the approaching target and background as 
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It is worth pointing out that in the real-world scenario, 
the intensity of each local view field is not equal. There-
fore, we only take the average intensity of the whole 
background to evaluate the contrast variance. 

The first group of experiments is implemented to ex-
amine the effectiveness of the proposed feedforward 
contrast inhibition synapse. Note that the spatial en-
hancement distribution Kae has been removed in this test. 

In Fig.3(a), the background intensity in the first row is 
0, and the intensities of approaching targets gradually 
decrease. Within the second row, the approaching target 
intensity is fixed to 255, and the background intensities 
increase by degrees. The contrast evaluation ξ is listed 
below the sub-figures. The comparative results in 
Fig.3(c) prove that in the pure normal backgrounds, the 
proposed neural model with contrast inhibition synapse 
could greatly reduce the contrast sensibility. 

In Fig.3(b), the average intensity of such scenario is 
around 106, and the various contrast evaluations ξ in these 
experimental videos range from 0.02 to 0.56. The com-
parative model outputs shown in Fig.3(d) demonstrate the 
contrast inhibition synapse could improve the model’s 
sensitivity for perceiving approaching event. Together, the 
systematic comparative results illustrate that the contrast 
inhibition synapse not only enhances the model’s ap-
proaching event perceiving ability, but also reduces the 
variability of the neuronal membrane potential. 

Furthermore, to investigate the unique selectivity of the 
proposed neural model to descending proximity differently 
to relevant models, characterized by the spatial enhance-
ment distribution Kae, we set an ablation experiment which 
respectively employs Kae and the normaliza-
tion-mechanism-based contrast inhibition synapse. The 
experimental videos contain a group of approaching mo-
tions from various altitudes. The videos are shown in 
Fig.4(a) and (b). Targets approaching from nine positions 
of the panoramic image are used to simulate the diving 
motions from diverse altitudes. The horizontal line has 
been set as position P=0 (see Fig.4(a)). The Kae parameters 
for the neuronal comparative outputs shown in Fig.4(c) 
are β1=1.2, β2=1, λ2=0.005. From the comparison of the 
neuronal responses, we can clearly see that the model 
couldn’t perceive the approaching cues when the contrast 
inhibition synapse and Kae are both not used (see red 
area). When implementing the Kae only, the model 
couldn’t produce reasonable response (pink area in 
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Fig.4(c)). The contrast inhibition synapse improves the 
sensibility of the model in detecting approaching mo-

tions, and the Kae strengthened such ability proportion-
ally in this test (blue area and green area, respectively).   

 

 

 
Fig.3 (a) A group of synthesized approaching videos in pure backgrounds (The number below each sub-figure is 
the contrast evaluation ξ. The background intensity of the first row is 0, and the approaching object intensity of 
the second row is 255); (b) A group of synthesized approaching videos in a panoramic nature view (The average 
intensity of the nature background is around 106); (c, d) Comparative results (shaded error area) of experimental 
videos respectively shown in (a) and (b) (The contrast inhibition kernel WC is the same as shown in Fig.2) 
 

The capacity in shaping the descending approaching 
selectivity of Kae is shown in Fig.4(d). Within this test, 
the Kae has been set as β1=0, β2=2, λ2=0.005. The ap-
proaching motions happen below the horizontal line, and 
can’t make the membrane potential exceed the spiking 
threshold, i.e., activate the BLG1 neuron (see the purple 
line and green line). When challenged by the approach-
ing motion which begins around the horizontal line, the 
BLG1 neuron could hardly detect the approaching mo-
tions until the target is close enough (see yellow line in 
Fig.4(d)). Although in the panoramic image, the target at 
higher elevation will be spatially compressed smaller  
(comparing P=200 and P=100 in Fig.4(b)), the higher 
altitude approaching motion cues integrated and en-
hanced by Kae, and promote the BLG1 neuronal mem-
brane potential to exceed the spiking threshold earlier, 
i.e., the red membrane potential passes the threshold ear-

lier than the blue line. Accordingly, the aforementioned 
experiments validate the proposed BLG1 neural model 
with robust performance against input variability on vis-
ual contrast and unique selectivity to diving target. The 
experimental results show that the proposed BLG1 
model selectively responds to diving approaching mo-
tions. 

In this paper, a novel neural model is proposed to im-
plement the BLG1 neuron’s selectivity in perceiving 
diving target via a spatial enhancement distribution Kae. 
Meanwhile, a bio-plausible feedforward contrast inhibi-
tion synapse has been introduced to accommodate the 
contrast invariance of the model. The systematic and com-
parative experiments illustrate that our proposed BLG1 
neural model not only perceives impending motions with 
more effectiveness and robustness, but also fits well with 
corresponding biological features, sensitive to motions
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Fig.4 (a) An approaching target starts from the altitude of the horizontal line (The start point is marked as the red 
square. F=0 and F=100 represent the zero frame and the 100th frame, respectively); (b) A group of diving ap-
proaching motions from various altitudes (All subfigures are captured from the 100th frames of each video); (c) 
An ablation experiment illustrates the performance of the newly introduced normalization-mechanism-based 
contrast inhibition synapse and the spatial enhancement distribution Kae; (d) A demonstration of the proposed 
model’s selectivity to diving target (The dashed gray line indicates the spiking threshold T=0.45) 
 
caused by diving target. In addition, some of the image 
pre-processing methods[10] could improve the perform-
ance of the photoceptor layer to extract moving targets 
more efficiently, which can also be involved in the pre-
sent model. 
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