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Semantic segmentation of urban street scene im-
ages based on improved U-Net network* 

 
ZHU Fuzhen1**, CUI Jingyi1, ZHU Bing2, LI Huiling1, and LIU Yan1 
1. College of Electronic Engineering, Heilongjiang University, Harbin 150080, China 
2. Institute of Image Information Technology and Engineering, Harbin Institute of Technology, Harbin 150001, 

China1 
 
(Received 19 July 2022; Revised 18 November 2022) 
©Tianjin University of Technology 2023 
 
To balance the speed and accuracy in semantic segmentation of the urban street images for autonomous driving, we 
proposed an improved U-Net network. Firstly, to improve the model representation capability, our improved U-Net 
network structure was designed as three parts, shallow layer, intermediate layer and deep layer. Different attention 
mechanisms were used according to their feature extraction characteristics. Specifically, a spatial attention module was 
used in the shallow network, a dual attention module was used in the intermediate layer network and a channel atten-
tion module was used in the deep network. At the same time, the traditional convolution was replaced by depthwise 
separable convolution in above three parts, which can largely reduce the number of network parameters, and improve 
the network operation speed greatly. The experimental results on three datasets show that our improved U-Net seman-
tic segmentation model for street images can get better results in both segmentation accuracy and speed. The average 
mean intersection over union (MIoU) is 68.8%, which is increased by 9.2% and the computation speed is about 
38 ms/frame. We can process 27 frames images for segmentation per second, which meets the real-time process and 
accuracy requirements for semantic segmentation of urban street images.  
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Image semantic segmentation is a key technology in the 
task of environment perception[1,2], which is the core task 
of autonomous driving. Image semantic segmentation 
can classify common targets captured by in-vehicle cam-
eras at pixel level[3], such as pedestrians, vehicles, traffic 
lights and railings in urban street images. It can assist the 
vehicle's decision planning module to make rational de-
cisions and plans, and guarantee safe driving of autono-
mous vehicles. However, urban street images often ex-
hibit complex and variable street targets. The character-
istics of the same target in the image are diverse, and the 
characteristics of different types of targets are also simi-
lar. Moreover, the influence of illumination, shooting 
angle and occlusion will inevitably lead to the reduction 
of segmentation accuracy. Solving the imbalance prob-
lem of accuracy and speed in semantic segmentation of 
urban street images is critical and challenging for the 
application of autonomous driving technology. 

Traditional image segmentation methods are mainly 
based on grey characteristics and can segment simple 
grey images. With the improvement of computer hard-
ware and software performance, image semantic seg-

mentation algorithms based on convolution neural net-
works are taking the lead in image segmentation field. 
The first end-to-end image semantic segmentation algo-
rithm was implemented by the fully conventional net-
work (FCN)[4]. In the FCN, 1×1 convolution layer is used 
to replace the fully-connected layers of the original net-
work, which makes it possible to input images of arbi-
trary size into the network, and the semantic segmented 
images can be obtained directly through the network. A 
skip structure is used to connect the shallow network and 
the deep network of FCN network[5,6], which can fuse the 
low-level features of the shallow layer with high-level 
features of the deep layer, and get better results in the 
semantic segmentation task. After the FCN, coding and 
decoding network models appeared, such as SegNet[7], in 
which the coding network part is used to extract the fea-
tures of the image and the decoding network part is used 
to extract the image features and restore the image di-
mensions. In order to solve the problem of limited per-
ceptual field during downsampling, the concept of di-
lated convolution was proposed in Ref.[8], which in-
creased the perceptual field without increasing the number 
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of convolutional kernels. In 2014, Google team proposed 
the Deeplab series of network structures, deeplab_v1[9], 
which combined dilated convolution with conditional 
random field (CRF). Deeplab_v2 proposed the atrous 
space pyramid pooling (ASPP)[10] module, which set the 
null rate of the dilated convolution to different values to 
extract and integrate image features of different scales. 
Deeplab_v3+ used the multi-grid strategy[11] to add dif-
ferent rates of dilated convolution at the back end of the 
model, and added a normalization layer[12] to the ASPP 
module. Depthwise separable convolution is used in the 
ASPP module to reduce the computational effort. In ad-
dition to the above methods to improve the accuracy of 
semantic segmentation models by increasing the depth 
and width of the network, it was found that attention 
mechanisms can assist feature extraction networks in 
aggregating contextual information, which can also im-
prove the accuracy of semantic segment models. In 2019, 
FU et al[13] proposed the dual attention network (DANet), 
after the ResNet network extracted the feature maps, the 
channel attention module and spatial attention module 
were used to process the feature maps in parallel, in or-
der to build global contextual dependencies on local fea-
tures and enhance feature representation. Above seman-
tic segmentation models have achieved high metrics in 
accuracy for urban street images, but there are still 
shortcomings in segmentation speed. In the context of 
autonomous driving scene understanding, the task of 
semantic segmentation of urban street images requires a 
combination of accuracy and speed to meet practical 
application requirements. Therefore, to achieve real-time 
and accuracy of urban street images segmentation, we 
used a simple U-Net semantic segmentation model, 
combined with depth-separable convolution and attention 
mechanisms. 

The U-Net[14] network is a typical coding and decod-
ing model, which extended the hop structure of FCN, 
except that the number of hop structures usage is in-
creased and the add connections in FCN are transformed 
into concat connections. The U-Net network combined 
coding features with decoding features, which can better 
extract the features of different categories of targets in 
complex urban street images. Since U-Net was originally 
proposed in the field of biomedical image segmentation, 
it is more suitable for datasets of small-scale images. For 
urban street images with complex features and large 
scales, it cannot provide enough features to support ac-
curate semantic segmentation. Simply increasing the 
network depth will not only slow down the real-time 
processing speed of the model, but also bring problems 
such as gradient disappearance. Therefore, we improved 
the U-Net network structure, and combined the network 
feature extraction with attention mechanism to balance 
accuracy and speed. We designed shallow, intermediate 
and deep networks, and introduced matching attention 
mechanisms into them respectively. At the same time, 
for large-scale urban street view images, we replaced 

traditional full convolution with depthwise separable 
convolution to avoid the problem of reduced urban street 
segmentation accuracy caused by the traditional U-Net 
reducing the size of images. 

The overall structure of the improved U-Net network 
model can be divided into three parts, shallow layer net-
work, intermediate layer network and deep layer net-
work. The spatial attention module, dual attention mod-
ule and channel attention module were brought to opti-
mize the network. The previous attention mechanism[15] 
is to directly fuse the spatial attention module and the 
channel attention module together, and then embed it 
into the backbone network to assist the extraction of fea-
tures, which will lead to a surge in computation[16]. 
Therefore, we replaced the traditional convolution with 
depthwise separable convolution to reduce the number of 
network parameters and computation and improved 
real-time segmentation speed. The structure of the im-
proved algorithm model is shown in Fig.1, where the 
three different types of attention modules are combined 
with the depth-separable convolutional blocks, indicated 
by short arrows of different colors. The short orange ar-
rows represent the combination of a spatial attention 
module and a depth-separable convolutional block. The 
short grey arrows represent the combination of a dual 
attention module and a depth-separable convolutional 
block, and the short green arrows represent the combina-
tion of a channel attention module and a depth-separable 
convolutional block. Our improvements are described 
below. 

Traditional U-Net network is suitable for small-sized 
images, while cannot guarantee the segmentation speed 
of the specific semantic segmentation for larger-sized 
urban street images. However, such small-sized training 
street scene images will lead to poor segmentation re-
sults. In order to ensure both accuracy and efficiency of 
the segmentation algorithm, we replaced the traditional 
convolution with depthwise separable convolution in the 
improved network to reduce the number of parameters 
and computation to achieve real-time segmentation.  

Compared with the traditional convolution which keeps 
the same number of convolution kernels and channels, the 
depthwise separable convolution is composed of chan-
nel-by-channel convolution and point-by-point 1×1 con-
volution which can integrate channel dimension features, 
and reduce the dimension of the channel according to the 
output demand. The comparison of the traditional convo-
lutional kernel and depthwise separable convolutional 
kernel is shown in Fig.2. 

In the implement of depthwise separable convolution,  
the input feature maps are performed by convolution 
operations channel by channel, then the numbers of fea-
ture maps in input channels are the same to those of out-
put. Then point-by-point convolution operation is used 
after the channel-by-channel convolution, to combine 
features between channels and to up-dimension or 
down-dimension the channels[17]. And the number of
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point-by-point convolution kernels is equal to that of the 
final output feature maps. In this paper, 17 depthwise 
separable convolution operations are used in the modi-
fied U-Net network. In order to keep the consistence of 
image size throughout the convolution operation, the 
edges of the image are padded with 0 (Padding='same') 
before the depthwise separable convolution operation 
performed. The other depthwise separable convolutions 
have the same structure with that of the first depthwise 

separable convolution, with the only difference in the 
number of output feature maps by each convolution op-
eration. We adjusted the image size of the dataset to 
256×256. Taking the first depthwise separable convolu-
tion operation as an example, the computation of the 
normal convolution operation is Q1=256×256×3×3×3× 
3×64=113 246 208. The computation of the depthwise 
separable convolution is  Q2=256×256×3×3×3+256× 
256×3×3×64=14 352 384.  

 

 

Fig.1 Improved U-Net model structure diagram 
 

 

Fig.2 Convolution kernel structure comparison 
 
We can see that the calculation in the first depthwise 

separable convolution operation is only about 0.13 time 
the computation of the ordinary convolution operation. 
When N feature maps are generated and the size of the 
convolution kernel is S×S, the ratio of depthwise separa-
ble convolution to normal convolution is 1/N+1/(S×S). 
The number of parameters in the original U-Net algo-
rithm model is 36M, while the number of parameters in 
our improved algorithm model is 13M. The number of 
parameters is reduced by about 2/3, which greatly im-
proves the computational efficiency. 

The semantic segmentation task needs to classify each 
pixel. In the process of extracting features by convolu-
tional neural network, the low-level features are obtained 
from the shallow network, such as position, edge and 
contour, etc, among which position information is more 
crucial[18]. Therefore, we introduced a spatial attention 
module[19] into the shallow network, which combined 
with deep separable convolution to effectively get the 
overall space distribution of each channel and better tar-
gets location. Specifically, first, the feature map is ob-
tained by deep separable convolution processing. Then, 
the spatial features of the input feature map are processed 
by global maximum pooling and global average pooling, 

respectively. The obtained features are fused into a new 
output feature, and a common convolution operation is 
performed on the new output feature. The convolution 
kernels number is set as 1 and its size is 7×7. The con-
volution layer is followed by the activation layer, and the 
Sigmoid function[20] is selected as the activation function. 
The activation output is normalized at the same time, 
which is more conducive to improve the calculation 
speed. And the output features are activated to obtain a 
spatial attention factor Ms, which is defined as Eq.(1). 
Finally, the input features are multiplied with the output 
spatial attention coefficients Ms to obtain the output fea-
tures incorporating spatial attention.  

7 7
s ( ) { [Avg( );Max( )]},M F f F F             (1) 

where σ represents the Sigmoid activation operation, f7×7 
represents the convolution operation with a 7×7 convolu-
tion kernel, Avg represents the global average pooling 
operation, and Max represents the global maximum 
pooling operation. The structure of the spatial attention 
module is shown in Fig.3. 
 

 

Fig.3 Spatial attention module 
 
The features extracted by the intermediate layer net-

work are mixed. In order to enable the intermediate layer 
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network to extract enough important features, we 
adopted a combination of channel attention and spatial 
attention, as shown in Fig.4. Firstly, the channel attention 
module is used to process the feature map, and the fea-
ture map fused with the channel attention coefficient is 
obtained. Then the spatial attention module is applied to 
obtain a feature map, in which the channel attention co-
efficients and the spatial attention coefficients[21] are 
fused. We called this new attention module as the dual 
attention module. To reduce the computations of the in-
termediate layer network, the depthwise separable con-
volution is applied to the intermediate layer network 
again, and its structure is the same as that of the shallow 
layer network. 
 

 
Fig.4 Dual attention module 

 
The deep network is used to extract higher layer fea-

tures which provide data support for the final classifica-
tion prediction. We applied the channel attention module 
to the deep network. Channel-level feature information 
was extracted from the channel attention module, which 
helps the model to determine the target pixel category. 
The channel features of the input feature map are first 
processed by global average pooling and global maxi-
mum pooling to obtain two channel output features, and 
then fed into the fully connected layer. To avoid a surge 
in data volume, not all the input channel features were 
processed in this fully connected layer, and we selected 
1/4 for processing. After the output channel features are 
processed by the first fully connected layer, they are fed 
into an activation layer for activation, where the linear 
rectification function (Relu)[22] is chosen as the activation 
function of the activation layer. The activated channel 
features are then fed into a second fully-connected layer, 
resulting in two new output channel features. The two 
new output channel features are added together to obtain 
a new output channel feature. Then it is sent to another 
activation layer for activation, and the Sigmoid function 
is chosen as the activation function of this activation 
layer to obtain a channel attention coefficient Mc, which 
is defined as shown in Eq.(2). Finally, the input features 
are multiplied with the channel attention coefficients Mc 
to obtain the output features incorporating the channel 
attention. 

c 0 1( ) { [Avg( )] [Max( )]},M F W F W F         (2) 
where σ represents the Sigmoid activation operation, W0 
and W1 represent the parameters in the two fully con-
nected layers, Avg represents the global average pooling 
operation, and Max represents the global maximum 
pooling operation. To reduce the computational effort, 
we applied depthwise separable convolution in the deep 

network as well. The structural design of the deep sepa-
rable convolution in the deep network remains the same 
as that of the shallow network. The structure of the 
channel attention module is shown in Fig.5. 
 

 

Fig.5 Channel attention module 
 
Three publicly datasets for street scent image segmen-

tation were used in our experiment, which were 
BDD100K, CamVid and Cityscapes, respectively. The 
Cityscapes dataset was used for our network training, the 
CamVid and Cityscapes datasets were used for test. Ci-
tyscapes dataset contains 25 000 coarsely and finely an-
notated images, 20 000 coarsely annotated images for 
pre-training and 5 000 finely annotated images for for-
mal training. We used 2 975 as the training set, 1 525 as 
the test set and 500 as the validation set. This dataset has 
the problem of uneven number of target types. We 
eliminated the uncommon targets through mapping 
process, and finally the finely annotated data are mapped 
into 19 classes. In order to enrich the training data, the 
existing accurately annotated data are enhanced by fus-
ing the original images with the corresponding annotated 
images and then randomly cropping them to 256×256 
size. At the same time, the original images and their cor-
responding annotated images are randomly flipped left 
and right with a flip probability of 0.5, so that the final 
number of accurately annotated images involved in the 
training is about 4 500. 

Pixel accuracy (PA) and mean intersection over union 
(MIoU) are respectively used as evaluation metrics for 
image semantic segmentation algorithms, defined as be-
low. 
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where the true positive pixels is represented as Pii, while 
the number of false positive pixels as Pij and the number 
of false negative pixels as Pji. PA is calculated as the 
ratio of the number of pixels correctly predicted by the 
model to the total number of pixels, and the higher the 
PA value, the better the algorithm works. MIoU is the 
result of averaging the ratio of the intersection of the 
predicted results and the true values for each category.
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The experimental environment was an Intel Xeon CPU 
E5-2640 v4 @2.40 GHz, 32 GB RAM, 64-bit Win10 
system, dual RTX2080 Ti GPU accelerated training, and 
Pytorch as the deep learning framework. First, 
pre-training was performed on 20 000 roughly labeled 
data from the Cityscapes dataset to initialize the weights, 
and then continued on the accurately labelled dataset.  

The cross-entropy loss function is selected, and the 
training weights were updated with the Adam optimiza-
tion algorithm. The batchsize was set to 8, and the initial 
learning rate was 0.001, and after 50 epochs of training, 

the learning rate was adjusted to 0.005 for 30 epochs, 
and finally the learning rate was adjusted to 0.000 1 for 
20 epochs to finish the net training.  

A total of 13 hours was cost for our network training. 
The pixel accuracy was 90.3%, and an average 
cross-merge ratio (MIoU) was 68.8%. Then well trained 
network and weights were saved, 100 validation data 
were selected from BDD100K, CamVid and Cityscapes 
for verification, which took a total of 3.2 s. A compari-
son of the semantic segmentation results of the improved 
U-Net network urban street images is shown in Fig.6.

 

   
(a) Original input images 

   

(b) Labeled images 

   

(c) Segmentation effect of original U-Net network  

   
(d) Segmentation effect of our improved U-Net network  

Fig.6 Segmentation results comparison on datasets of BDD100K, CamVid and Cityscapes from left to right 
 

As shown in Fig.6, subgraph (d) has smoother seg-
mentation and more accurate classification of small tar-
gets than the original U-Net subgraph (c), and closer to 
the labeled subgraph (b) which is used for training. At 
the same time, our improved U-Net network segmenta-
tion algorithm is compared with the current leading deep 
learning image segmentation algorithm by the IoU value, 
as shown in Tab.1. It can be seen that the IoU value of 
our proposed network has remarkable advantages. Espe-
cially in the last two lines, our improved U-Net semantic 
segmentation algorithm has significantly improved the 
segmentation IoU of pedestrians, traffic lights, cyclists 

and other targets, with a maximum increase of 14.2% 
(cyclists). The MIoU value of the overall category 
reached 68.8%, which is 9.2% higher than that of the 
U-Net network algorithm before improvement.  

Finally, ablation experiments were done for our im-
proved optimization models, such as deep separable 
convolution, channel attention used in shallow network, 
double attention used in intermediate network, and spa-
tial attention used in deep network, and they are respec-
tively verified, which is shown in Tab.2. The ablation 
experiment results show that the accuracy is greatly im-
proved by our optimization models.  



·0184·                                                                        Optoelectron. Lett. Vol.19 No.3 

 

Tab.1 IoU comparison on common categories with state-of-the-art image segmentation nets (%) 

Tab.2 Ablation experiments for our improved optimization models 

Depthwise separable convolution Channel attention module Spatial attention module Dual attention module MIoU (%) 

× × × × 59.6 

√ × × × 63.5 

√ √ × × 65.9 

√ √ √ × 66.7 

√ √ √ √ 68.8 

 
The basic U-Net model was improved in this paper, 

and attention mechanism was introduced according to the 
feature extraction characteristics, such as spatial attention 
module, dual attention module and channel attention 
module. To realize a semantic segmentation network 
model of urban street images with both speed and accu-
racy, the traditional convolution is replaced by the 
depthwise separable convolution. The experimental re-
sults show that the feature representation capability of 
the feature extraction network was improved due to the 
combination of the attention module, and our improved  
U-Net model can get better performance. Through test on 
the Cityscapes dataset, the PA is 90.3% and the MIoU is 
increased by 9.2%. Meanwhile, the use of depthwise 
separable convolution reduced the number of parameters 
of the original U-Net model from 36M to 13M, which 
greatly reduces the computational complexity and in-
creases the speed of the network. To be specific, the im-
proved U-Net network model has a computing time of 
38 ms/frame and can process images up to 27 frames per 
second, which meets the real-time requirements for se-
mantic segmentation of autonomous driving traffic scenes.  
 
Statements and Declarations 

The authors declare that there are no conflicts of interest 
related to this article. 
 
References 
 
[1] ZHOU J M, LI B J, CHEN S Z. A real-time segmentation  

 
method of road scene based on multi-layer feature fu- 
sion[J]. Surveying and mapping bulletin, 2020, (1)：10- 
15. 

[2]   MO Y, WU Y, YANG X, et al. Review the 
state-of-the-art technologies of semantic segmentation 
based on deep learning[J]. Neurocomputing, 2022, 493：
626-646. 

[3]   BAI J, HAO P H, CHEN S H. Traffic scene under-
standing using lightweight convolutional neural net-
work image semantic segmentation[J]. Journal of auto-
motive safety and energy, 2018, 9(04)：433-440.  

[4]   SHELHAMER E, LONG J, DARRELL T. Fully con-
volutional networks for semantic segmentation[J]. IEEE 
transactions on pattern analysis and machine intelli-
gence, 2017, 39(4)：640 - 651. 

[5]   LIU W M, XIN Y L, JIANG X Y. Semantic segmenta-
tion of residual network image combined with jump 
connection[J]. Information technology, 2020, 44(06)：
5-9.   

[6]   YANG C J. Image semantic segmentation based on 
convolutional neural network[D]. Lanzhou：Northwest 
Normal University, 2020：25. 

[7]   BADRINARAYANAN V, KENDALL A, CIPOLLA R, 
et al. SegNet：a deep convolutional encoder-decoder 
architecture for image segmentation[J]. IEEE transac-
tions on pattern analysis and machine intelligence, 
2017, 39(12)：2481-2495. 

[8]   YU F, KOLTUN V, FUNKHOUSER T. Dilated residual 
network[C]//Proceedings of the IEEE Conference on 
Computer Vision and Pattern Recognition, July 21-26, 
2017, Hawaii, USA. New York：IEEE, 2017：472-480. 

Categories Road Buildings 
Traffic 

lights 

Traffic 

signs 
Pedestrians Riders Cars Bus 

ALL 

(MIoU) 

SegNet 97.2 88.8 47.5 44.5 57.1 30.7 82.1 68.5 55.6 

DeepLab v3+ 93.3 81.3 41.6 52.1 48.7 54.7 82.8 77.4 63.5 

HRNet 94.2 86.3 40.8 54.2 63.2 50.2 84.5 67.6 58.4 

U-Net 92.1 86.0 53.5 63.5 65.9 40.6 89.7 63.5 59.6 

Improved U-Net 96.7 86.1 65.0 66.0 78.4 54.8 89.9 68.7 68.8 



ZHU et al.                                                                  Optoelectron. Lett. Vol.19 No.3·0185· 

 

[9]  CHEN L C, PAPANDREOU G, KOKKINOS I, et al. 
Semantic image segmentation with deep convolutional 
nets and fully connected CRFs[EB/OL]. (2014-12-22) 
[2022-06-20]. https：//arxiv.org/abs/1412.7062. 

[10]  CHEN L C, PAPANDREOU G, KOKKINOS I, et al. 
DeepLab： semantic image segmentation with deep 
convolutional nets, atrous convolution, and fully con-
nected CRFs[J]. IEEE transactions on pattern analysis 
and machine intelligence, 2016, 40(4)：834-848.  

[11]   ZHANG Y H, LIU H, TIAN W, et al. A method of rain 
cloud cluster segmentation in Tibet based on Dee-
pLabV3[J]. Journal of computer applications, 2020, 
40(09)：2781-2788. 

[12]   KUMAR P, SHANKAR H A. Convolutional neural 
network with batch normalisation for fault detection in 
squirrel cage induction motor[J]. IET electric power ap-
plications, 2021, 15(1)：39-50. 

[13]   FU J, LIU J, TIAN H, et al. Dual attention network for 
scene segmentation[C]//Proceedings of the IEEE/CVF 
Conference on Computer Vision and Pattern Recogni-
tion, June 16-20, 2019, Long Beach, CA, USA. New 
York：IEEE, 2019：3146-3154. 

[14]   RONNEBERGER O, FISCHER P, BROX T. U-Net：
convolutional network for biomedical image segmen-
tion[C]//International Conference on Medical Image 
Computing and Computer-Assisted Intervention, Octo-
ber 5-9, 2015, Munich, Germany. Berlin, Heidelberg：
Springer-Verlag, 2015：234-241. 

[15]   CHEN Z, LI D, FAN W, et al. Self-attention in recon-
struction bias U-Net for semantic segmentation of 

building rooftops in optical remote sensing images[J]. 
Remote sensing, 2021, 13(13)：2524. 

[16]   XIAO J Q. Semantic segmentation of road scene based 
on deep learning[D]. Changchun： Jilin University,  
2019：23-27.   

[17]   WU T. Research on road scene semantic segmentation 
algorithm based on fully convolutional neural net-
work[D]. Chongqing：Southwest University, 2020：
14-16. 

[18]   YU F. Research and implementation of multi-scene 
image semantic segmentation based on fully convolu-
tional neural network[C]//3rd International Conference 
on Mechatronics Engineering and Information Tech-
nology (ICMEIT 2019), March 29-30, 2019, Dalian, 
China. Paris：Atlantis Press, 2019：156-161. 

[19]  CHEN Z, LI D, FAN W, et al. Self-attention in recon-
struction bias U-Net for semantic segmentation of 
building rooftops in optical remote sensing images[J]. 
Remote sensing, 2021, 13(13)：2524. 

[20]   LUO P F. Research on semantic segmentation of 
autonomous driving city scene[D]. Wuhan：Wuhan 
University, 2019：16-22. 

[21]   YUAN X, SHI J, GU L. A review of deep learning 
methods for semantic segmentation of remote sensing 
imagery[J]. Expert systems with applications, 2021, 
169：114417. 

[22]   ZHANG L, HU X, ZHOU Y, et al. Memristive Dee-
pLab：a hardware friendly deep CNN for semantic 
segmentation[J]. Neurocomputing, 2021, 451：181-191.

 


