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Mathematical representation of 2D image boundary 
contour using fractional implicit polynomial* 
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Implicit polynomial (IP) fitting is an effective method to quickly represent two-dimensional (2D) image boundary 
contour in the form of mathematical function. Under the same maximum degree, the fractional implicit polynomial 
(FIP) can express more curve details than IP and has obvious advantages for the representation of complex boundary 
contours. In existing studies, algebraic distance is mainly used as the fitting objective of the polynomial. Although the 
time cost is reduced, there are problems of low fitting accuracy and spurious zero set. In this paper, we propose a 
two-stage neural network with differentiable geometric distance, which uses FIP to achieve mathematical representa-
tion, called TSEncoder. In the first stage, the continuity constraint is used to obtain a rough outline of the fitting target. 
In the second stage, differentiable geometric distance is gradually added to fine-tune the polynomial coefficients to 
obtain a contour representation with higher accuracy. Experimental results show that TSEncoder can achieve mathe-
matical representation of 2D image boundary contour with high accuracy. 
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Mathematical representation of contours has many ap-
plications in geometric modeling[1], target recognition[2-4] 
and posture estimation[5,6]. Implicit polynomial (IP) can 
be used for image compression, transmission and recon-
struction due to its simplicity, stability and robustness[7,8]. 
Specifically, IP is simple, can describe irregularly shaped 
objects with a few parameters, and has good analytical 
expression. IP is stable and its coefficients are insensitive 
to noise, so it can be used to identify objects quickly. IP 
is robust and can complete the analytic expression of the 
part of data missing due to occlusion, which is easy to 
operate and use. 

In general, it is necessary to increase the maximum 
degree of IP to represent the two-dimensional (2D) ob-
ject contours of complex shape. However, increasing 
degree will add computational cost and reduce stability. 
Therefore, it is difficult for the traditional integer IP to 
represent the complex 2D image boundary contour. 
Moreover, higher-order IP does not guarantee the accu-
racy of fitting complex objects. Even though the data set 
is always continuous and bounded, the result may appear 
spurious, discontinuous and unbounded zero sets phe-

nomenon[9-12]. The higher degree of the polynomial, the 
more sensitive the roots of the polynomial are to the per-
turbations of the coefficients[13]. Minor changes of the 
coefficient of IP can produce significant changes to the 
contour representation results. Based on the IP, fractional 
implicit polynomial (FIP) transfers the degree of the 
polynomial from an integer to a fraction. FIP can im-
prove the contour representation accuracy without in-
creasing the maximum degree.  

At present, many polynomial fitting methods have 
been proposed, which can be divided into traditional 
methods and deep learning methods. Traditional methods, 
such as 3L[14], Min-Max[15] and Min-Var[15], add different 
constraints to calculate polynomial coefficients by means 
of least square method. The most representative deep 
learning method is Encoder-X[16], which uses encoder to 
solve polynomial coefficients. The deep learning method 
is better than the traditional method in the accuracy of 
fitting and has the ability to resist noise interference. 
Therefore, we borrowed the idea of Encoder-X, in order 
to further exploit the advantages of deep learning. Since 
the training result of neural network is largely related to 
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the initial value of the network, the training process of 
neural network can be divided into two stages. In the first 
stage, continuity constraints are used to get the rough 
outline of the fitting object, which is used as a reliable 
initial value of the network, and then the details are op-
timized in the second stage. 

In the IP fitting task, how to evaluate the fitting result 
is an important step. Current IP fitting studies generally 
evaluate the error from the original data point to the IP 
curve by calculating the algebraic distance or geometric 
distance[17]. The algebraic distance can be calculated 
simply by substituting the original data points into the IP 
expression, but the geometric information of the data is 
lost. In addition, algebraic distance depends on coordi-
nates, is a biased parameter estimation, and does not 
conform to visual intuition[17]. Geometric distance is to 
calculate the orthogonal distance between the data point 
and the IP curve. Geometric distance solves the problem 
of algebraic distance as a measure of distance. Due to the 
difficulty of calculation and the consideration of calcula-
tion cost, the approximate value of geometric distance is 
generally used in practice to achieve the balance between 
calculation accuracy and calculation cost. In addition, in 
order to apply geometric distance to the optimization 
process of neural network, the calculation process of 
geometric distance needs to be differentiable. 

Therefore, we propose a new framework for 2D image 
contour representation using FIP, called TSEncoder. The 
differentiable geometric distance is used as the optimiza-
tion objective in the fitting process, and the two-stage 
optimization neural network is used to improve the con-
tour representation accuracy. The experiment results 
show that TSEncoder can achieve higher accuracy. 

IP fitting determines the most appropriate IP coeffi-
cient vector based on the specified data set. In recent 
years, many methods have been developed to achieve IP 
fitting, such as 3L algorithm[14], gradient-one[18], 
ridge-regression[18], Min-Max[15] and Min-Var[15]. The 3L 
algorithm[14] is applied to solved linear least squares 
problems by shrinking and extending the data set, incor-
porating additional linear constraints into the fitting pro-
cess. Modified 3L[15] is modified on the basis of 3L, from 
scaling the data set to obtaining the 3L set through the 
gradient direction of the data set. Min-Max and 
Min-Var[15] use linear least squares with additional con-
straints to produce more stable and accurate results. In 
addition to traditional IP methods, due to the rapid de-
velopment of deep learning in recent years, Encoder-X is 
proposed to solve polynomial coefficients by using neu-
ral networks. Encoder-X[16] regards polynomial coeffi-
cients as the eigenvalues of original data in polynomial 
space expression. It consists of an encoder defined by a 
neural network and a decoder defined by a polynomial 
mathematical expression. 

In order to further improve the IP contour representa-
tion accuracy, HU et al[17] proposed the definition of FIP. 
FIP is an extension of IP. The FIP curve is the zero set of 

a smooth two-variable polynomial function fnm(x, y) 
which is 
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where n represents the degree and m represents the base. 
n and m are both integers greater than 1, and m is re-
quired to be an odd-number. However, up to now, no 
further studies have been conducted to use FIP for con-
tour representation due to the complexity of FIP solving.  

Distance measures used in polynomial fitting can gen-
erally be classified into algebraic distance and geometric 
distance. All of the above polynomial fitting methods use 
algebraic distance as the optimization objective. Al-
though the calculation of algebraic distance is simple, the 
geometric information of the data is lost. Therefore, in 
order to further improve the accuracy of mathematical 
representation of boundary contour, geometric distance 
can be used as the distance measure. Currently, some 
scholars have proposed some geometric distance calcula-
tion methods for IP fitting task[17,19-21], but the calculation 
process is quite complicated. 

We apply deep learning to solve the coefficients of 
FIP. The framework of TSEncoder is shown in Fig.1. 
Once an image is received, data pre-processing is first 
performed, which includes contour detection and nor-
malization.   

 

 
Fig.1 Framework of TSEncoder 

 
The contour detection algorithm[22] can obtain ordered 

data points. And then TSEncoder performs the normali-
zation processing on the ordered data points. The proc-
essed data is fed into the network, where the encoder 
calculates the polynomial coefficients and the decoder 
takes the coefficients as input to restore the FIP.  

In order to evaluate the accuracy of the contour repre-
sentation, the height of the triangle constructed between 
the data points and the FIP curve is calculated as an ap-
proximation of the geometric distance. The triangle used 
for estimating the geometric distance is shown in Fig.2. 

The height of triangle dTH can be easily obtained as 
follows 
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The approximation along the x axis is obtained from 
the first order Taylor expansion  
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The segment | |pr  can be easily estimated as 
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Therefore, the approximate value dTH of the differen-

tiable geometric distance of point P can be estimated as 
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Cumulative geometric distance estimates for all points 
can be obtained as follows 
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The differentiable geometric distance metric has the 
advantage of preserving the gradient information, thus it 
can be applied to the optimization process of neural net-
work. More details can be found in Ref.[23]. 

 

 
Fig.2 Geometric distance approximation 

The initial value of the neural network has an impor-
tant impact on the results, so the neural network is de-
signed to use a two-stage optimization approach. The 
first stage uses a continuity constraint in order to obtain a 
rough outline of the target object as the initial value for 
the second stage of neural network training. 

Continuity constraints refer to Ref.[18], where fx is the 
partial derivative on the X-axis and fy is the partial de-
rivative on the Y-axis. Nx and Ny are the norm vectors of 
the original data points. The continuity constraint C is 
the average cosine distance between the norm vector and 
the gradient vector. 
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Since the model number vector in the table is parallel 
to the gradient vector when the continuity constraint C is 
close to 1, the loss in the optimization process of the first 
stage of the neural network is defined as 

| 1 | .loss C   (8) 
In the second stage, details are optimized. With the it-

eration of the neural network, the proportion of continu-
ity constraints is continuously reduced and the proportion 
of geometric distance is increased. The second stage can 
make the IP curve closer to the contour of the object. The 
scale factor ratio is the ratio of the current epoch to the 
maximum number of epochs. 

 ratio = epoch /  EPOCH.  (9) 
Thus, the loss in the optimization process of the sec-

ond stage of the neural network is defined as 
(1 ) 1 loss = ratio | C |+ ratio  dist.            (10) 

We use the Adam as optimizer. We set the initial 
learning rate as 0.003 and the learning rate to decay by 
0.5 every 1 000 steps. We set the epoch to 5 000. When 
the network has been iterated 2 000 times, the TSEn-
coder starts the second stage optimization. 

To perform the experiments for contour representation, 
20 objects are collected as shown in Fig.3. The dataset is 
derived from Refs.[7,14,15,18] as well as the Internet.  

 

   

        

Fig.3 Objects used in the experiments 
 

For each fitting object, we select the most appropriate 
degree for FIP. In order to verify the effectiveness of the 
two-stage neural network, we conduct ablation experi-
ments and results can be seen in Fig.4. The TSEncoder 
(one stage) only uses the geometric distance as the loss 
function of the neural network without the continuity 
constraint. By comparing the results of the ablation ex-
periment, it can be observed that the fitting curves ob-
tained by (b) TSEncoder (one stage) are neither closed 
nor ideal. In contrast, the experimental results of (a) 
TSEncoder show that the continuity constraint allows the 
network to obtain better initial values and facilitates a 
more accurate contour representation effect. 

We conducted experiments to verify the effect of us-
ing different distance metrics on the contour representa-
tion. The experimental results in Fig.4(a) and (c) indicate 
that the algebraic distances do not preserve the geometric 
information and therefore do not reflect the contour rep-
resentation realistically. Ultimately, it leads to a contour 
representation with low accuracy. 

In order to verify the missing data completion ability 
of TSEncoder algorithm, experiments are conducted un-
der different missing proportions. We set the proportion 
of missing data as 3%, 5% and 8%, respectively. The 
experimental results are shown in Fig.5. It can be seen 
that the TSEncoder can achieve contour representation 
with high accuracy at different missing proportions. 

To verify the performance of TSEncoder, we conduct 
detailed experiments. We compare TSEncoder with the 
current popular polynomial fitting methods, namely 
Min-Max, Min-Var, Modified 3L, and Encoder-X, which 
all use IP. In order to ensure the fairness of our experi-
ment, we modify these methods by using FIP. For En-
coder-X, we refer to the parameter settings in Ref.[16]. 

Both TSEncoder and Encoder-X are polynomial fitting 
methods based on deep learning. The two methods are 
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different in two aspects: distance measurement and neural 
network optimization. TSEncoder uses geometric distance 
as the measure of fitting results, while Encoder-X uses 
geometric distance. TSEncoder optimizes the polynomial 
coefficient solving process using a two-stage neural 
network. In the first stage, continuity constraints are used 
to provide reliable initial values. In the second stage, 
geometric distance is gradually added to optimize details. 
Encoder-X uses only one stage to optimize the neural 
network. By applying constraints similar to the 3L algo-

rithm, data enhancement is carried out by zooming in 
and out of data points. The specific experimental results 
are shown in Fig.4. As can be seen from the experimen-
tal results, the results obtained by TSEncoder have the 
highest accuracy. TSEncoder can obtain closed, smooth 
FIP curves. But the other four methods can not fit the 
contour of the object well, and there is spurious zero set 
phenomenon. Tab.1 lists the geometric distance of dif-
ferent methods. It shows that TSEncoder has the lowest 
geometric distance of the 20 objects. 

 
Object Thumb Air-

plane1 
Air-

plane2 Guitar Butter-
fly Bird    Rabbit Dog Bear1 Bear2 Banana Bear3 Bear4 Cat1 Crown Duck Head-

shot Rocket Cat2 Tree 

(a) 
            

(b) 
            

(c) 
                   

(d) 
                   

(e) 
                   

(f) 
                   

(g) 
                   

Fig.4 Experimental results: (a) TSEncoder; (b) TSEncoder (one stage); (c) TSEncoder (algebraic distance); (d) 
Encoder-X; (e) Min-Max; (f) Min-Var; (g) Modified 3L 
 
Object Thumb Air-

plane1 
Air-

plane2 Guitar Butter-
fly  Bird   Rabbit Dog Bear1 Bear2 Banana Bear3 Bear4 Cat1 Crown Duck Head-

shot Rocket Cat2 Tree 

Degree 4 5 4 4 4 4 4 4 4 4 4 5 4 5 4 4 4 4 4 4 

3% 
        

5% 
        

8% 
        

Fig.5 Missing data completion capacity 
 

Tab.1 Geometric distance comparison 

 (a) (b) (c) (d) (e) (f) (g) 
Thumb 0.12 0.19 2.79 1.04 0.81 4.92 15.15 

Airplane1 2.57 9.66 5.57 104.73 11.77 37.30 52.25 
Airplane2 0.86 41.75 5.83 28.80 3.75 27.79 66.07 

Guitar 1.09 5.60 7.07 13.08 1.52 3.85 4.59 
Butterfly 1.13 1.27 6.06 7.61 2.32 15.21 22.78 

Bird 2.45 5.14 10.61 7.92 2.77 235.84 206.54 
Rabbit 1.98 2.17 15.87 6.22 4.13 9.11 15.60 
Dog 0.69 0.76 9.58 9.44 1.29 2.91 4.76 

Bear1 0.11 0.27 1.19 1.35 0.35 4.35 11.20 
Bear2 0.81 3.83 1.56 1.45 0.83 2.90 7.48 

Banana 0.07 0.40 0.34 5.69 0.61 3.51 6.35 
Bear3 2.23 3.34 3.45 10.17 2.72 13.06 17.68 
Bear4 1.00 16.22 8.18 20.00 2.34 27.94 127.20 
Cat1 3.12 4.51 284.01 35.03 3.71 15.94 65.49 

Crown 0.12 2.23 3.04 16.73 1.85 15.53 67.89 

Duck 0.94 1.06 21.02 7.31 7.21 8095.84 33.20 
Headshot 0.08 0.40 1.94 2.47 0.75 3.53 6.05 
Rocket 2.09 3.55 14.88 3.00 2.55 45.51 73.99 
Cat2 1.60 1.66 10.58 1.71 1.72 15.94 35.96 
Tree 8.08 12.05 123.97 23.48 8.95 9.11 9.18 

Note: (a) TSEncoder; (b) TSEncoder (one stage); (c) TSEncoder (alge-
braic distance); (d) Encoder-X; (e) Min-Max; (f) Min-Var; (g) Modi-
fied 3L 
 

In order to improve the fitting accuracy of IP, we pro-
pose a contour representation method based on deep 
learning using FIP, called TSEncoder. We adopt the ap-
proximate calculation method of differentiable geometric 
distance which can save the gradient information and be 
used in neural network optimization. Our ablation experi-
ment proves the advantage of using two-stage neural net-
work to optimize the coefficients. Continuity constraints 
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can help the network get a better initial value, which is 
conducive to the optimization of the solution process of 
the neural network. The experiment of missing data 
completion proves that our method can still achieve high 
precision fitting when the object is blocked. In our com-
parison experiment, the contour representation accuracy 
of TSEncoder is much higher than that of the other four 
methods, and there is no spurious zero set phenomenon 
in the results. In the future, we will apply the proposed 
model to 3D surface modeling scenarios. 
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