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When the aircraft is moving at high speed in the atmosphere, aero-optical imaging deviation will appear due to the 
influence of aero-optical effect. In order to achieve real-time compensation during the flight of the aircraft, it is 
necessary to analyze and predict the obtained imaging deviation data. In order to improve the search speed and 
accuracy of the prediction algorithm and the ability to jump out of local optimum, in this paper, an improved sparrow 
search algorithm optimized extreme learning machine (ISSA-ELM) neural network model is proposed to predict the 
aero-optical imagine deviation.  Finally, the performance of ISSA-ELM, ELM neural network and SSA-ELM neural 
network was tested. The results showed that compared with ELM and SSA-ELM algorithms, the convergence speed of 
ISSA-ELM was significantly enhanced, and the accuracy of data prediction was also significantly improved. 
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When the infrared guided aircraft moves at a high speed 
in the atmosphere, a non-uniform flow field will be 
generated at the head of the aircraft, and both the beam 
generation and the beam absorption system will be 
affected by this flow field, which is called aero-optical 
effect. Because of aero-optics effect, the light will be 
deflected when passing through the aero-optics flow field. 
At this time, the light will have a difference between the 
imaging position with and without aero-optics flow field, 
and this imaging deviation is aero-optics imaging 
deviation[1-5]. Practice has proved that the infrared guided 
aircraft will be affected by altitude, Mach number, angle 
of attack and line-of-sight angle during flight. However, 
in the process of practical application, the system cannot 
have only one calculation state. In order to achieve real-
time compensation of imaging deviation, it is necessary 
to analyze and predict the obtained imaging deviation 
data[6]. In order to meet the time of imaging deviation 
compensation by airborne optical system, intelligent 
optimization algorithm is used to predict the imaging 
deviation, which is of great significance to the future 
military system.  

Back propagation (BP) neural network training speed 
is slow, easy to fall into the local minimum point, 
extreme learning machine (ELM) neural network 
improved and optimized BP neural network, randomly 
generated input layer and hidden layer connection weight 
and hidden neuron threshold, improve the learning 

efficiency, and the parameter setting is omitted[7]. When 
ELM is used to solve the prediction problem, input 
weight and hidden layer neuron threshold directly 
determine the accuracy of prediction results, and 
appropriate input weight and threshold can effectively 
improve the prediction accuracy. However, the random 
generation of input weight and hidden layer neuron 
threshold of ELM is easy to lead to divergence of 
prediction results. The classical idea is to use swarm 
intelligence algorithm to optimize and generate input 
weight and hidden layer neuron threshold of ELM, and 
to transform the solving of input weight and hidden layer 
neuron threshold of ELM into an optimal solution 
problem[8-10]. In this paper, the weight and threshold of 
ELM are optimized by the improved sparrow search 
algorithm (ISSA).   

The optimization of input weight and neuron threshold 
of hidden layer by particle swarm optimization (PSO) 
algorithm will have the problem of slow iterative 
convergence and easy to fall into local optimal[11], and 
the performance of a PSO depends on its topology, and 
there is no optimal topology for all problems[12]. ZHU et 
al[13] introduced differential evolution into ELM and 
proposed an evolutionary ELM (E-ELM) algorithm. The 
algorithm uses simple differential variation and 
crossover operators, and searches for the optimal input 
weights and hidden bias according to the dynamic 
adjustment of the whole population, so as to obtain a
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more compact network structure. However, the control 
parameters generated in this algorithm need to be set 
manually, and the operation is complicated and time-
consuming. CAO et al[14] proposed an adaptive E-ELM 
algorithm. The algorithm can adjust the crossover 
probability and scaling factor adaptively, which improves 
the convergence of the algorithm, but cannot deal with 
the problem of data imbalance. QI et al[15] proposed to 
use genetic algorithm (GA) to optimize ELM to predict 
solar radiation, which improved the prediction accuracy 
of ELM, but the optimization effect decreased and the 
time was long in the case of too much data. Based on this, 
there are many different types of algorithms available in 
the existing literature. Each algorithm has its own 
advantages, but it also has disadvantages. For example, 
PSO in the above literature is easy to premature 
convergence. GA’s search speed is slow. The sparrow 
optimization algorithm adopted in this paper overcomes 
these shortcomings to some extent. The algorithm has 
fast convergence speed and good stability, and is superior 
to other algorithms to some extent[16,17]. But SSA, like 
other population algorithms, is easy to fall into local op-
timum, and the global search ability is weak, through the 
improvement of sparrow algorithm, the algorithm can 
obtain higher prediction accuracy and accuracy, and 
expand the global search, avoid falling into local 
optimization.  

Aero optical imaging deviation is mainly calculated 
through wind tunnel experiment or computational fluid 
dynamics (CFD) software, the imaging deviation data in 
this paper are obtained through a series of CFD calcula-
tions. 

 During the flight of infrared guided aircraft, there will 
be different flight conditions, such as the current flight 
height, flight speed, etc. Many research and tests show 
that the imaging deviation is mainly affected by the alti-
tude, Mach number, angle of attack and line-of-sight 
angle. When a certain factor changes, the imaging devia-
tion also changes, that is, the influence of a single factor 
on the imaging deviation. For example, when the flight 
altitude of the aircraft increases, the imaging deviation 
decreases gradually. When the flight speed of the aircraft 
increases, the imaging deviation increases gradually. 

 However, a flight condition can only represent the 
current conditions of four factors, which are independent 
relations. Therefore, in this paper, the above four factors 
are used as input variables, and the imaging deviation, is 
used as output variables.  

 But CFD this experimental method has high cost and 
long calculation time. A lot of calculations need to be 
done for each aircraft. However, because the data ob-
tained in the experiment is not enough, and the working 
state of airborne optical system is not the only one, there 
will be many accidents. Therefore, we need to analyze 
these discrete data and establish a reliable prediction 
model. 

ELM is a single hidden layer feedforward neural net-
work, which can randomly initialize the input weight and 
bias, obtain the corresponding output weight. Its struc-
ture is shown in Fig.1[18]. 

 

 

Fig.1 Typical ELM neural network 
 

In the figure above, Xn is the n-dimensional input 
vector and Ym is the m-dimensional target vector.  Then 
the output of an ELM neural network with i hidden 
layers is 
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where ωi is the weight between input layer and hidden 
layer, βi is the weight between input layer and hidden 
layer, vi is the threshold of the hidden layer neurons, and 
G(x) is the activation function. 
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where T is the expected output vector, and Hω,v,X is the 
output matrix of hidden layer. It can be expressed as 
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The output weight β* can be solved using the follow-
ing equation: 

* ,  H T                                                       (4) 
where H+ is the generalized inverse of the Moore-
Penrose output matrix H of the hidden layer. 

The SSA is inspired by the sparrow's behavior of look-
ing for food and anti-predation in the biological world. Its 
main rules are as follows. The discoverer in the sparrow is 
responsible for searching for areas with food and water 
sources in the whole population, and providing foraging 
areas and directions for all participants. When the sparrow 
finds a predator, the vigilant will sound an alarm, and the 
sparrow at the edge of the group will quickly move to a 
safe area and get a better position. When the alarm signal 
is greater than the safe value, the discoverer will lead other 
sparrows and newly added sparrows to find food in other 
safe places. The foraging position of the population is re-
lated to the energy of the participants. In the process of 
foraging, participants can always find the best discoverer, 
follow the discoverer to get food and forage in the area 
found by the discoverer. Some participants even continu-
ously monitor the discoverer in order to increase their 
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predation rate[16]. 
 T1 2 ,1 ,2 ,, , , ,n i i i i dx x x     X x x x x

            
  (5) 

where n is the number of sparrows, i=1, 2,…, n, d is the 
dimension of the variable, and the fitness matrix of spar-
row is: 
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where each value in Fx represents the fitness value of an 
individual. 

Sparrows with good adaptability will give priority to 
the best position, and these sparrows will lead the popu-
lation to live in a place rich in food and water as discov-
erers. The location formula of these discoverers is as 
follows: 
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where t represents the number of iterations at that time, 
j=1, 2,…, d, and ,

t
i jX represents the position of the ith 

sparrow in dimension j. itermax is the maximum number 
of iterations, α is a random number ranging from 0 to 1, 
R2 (R2∈[0, 1]) represents the warning value, and ST (ST
∈[0.5, 1]) represents the safe value. Q is a random num-
ber with normal distribution from 0 to 1, L is 1 by d mul-
tidimensional matrix, and the matrix entries are all 1's. 
When R2<ST, it means that the finder has no natural 
enemies in the search area, so they can expand the search 
area. When R2≥ST, it means that the warning value is 
higher than the safety value, so they should fly to the 
safe area as soon as possible. 

Following the discoverers are those who participant, 
and their positions are determined by  
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where Xworst represents the global worst position, and A 
is the multidimensional matrix of 1×d, but the elements 
in the matrix are −1 and 1 of random numbers, and 
A+=AT(AAT)-1. When i>n/2, it means that the ith partici-
pant with poor fitness value does not get food, the energy 
value is very low, and needs to go elsewhere to get more 
food. 

Generally, 10%—20% of sparrows in a population 
will act as the vigilant of the whole population, and its 
position update formula is 
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where Xbest represents the global best position, β is a 
normal distribution random number with mean value of 0 
and variance of 1, and a uniform random number in the 
range of k∈[−1, 1]. fi is the fitness value of the current 

sparrow, fa is the global optimal fitness value, and fw is 
the global worst fitness value. ε is to avoid constants with 
a denominator of 0 that are not 0 when fi >fa, indicating 
that the population is at the edge of danger and threat-
ened by natural enemies, when fi=fa indicates that the 
sparrows in the middle of the population are aware of the 
attack of natural enemies and need to be close to the safe 
area.  k is the step control parameter. 

In the basic SSA, in R2<ST, with the increase of the 
number of iterations, each dimension of sparrow decreases 
with the increase of the number of iterations, so the search 
element space decreases and the probability of falling into 
local is increased. Sine cosine learning factor is added to 
improve the ability of global exploration. The improved 
discoverer location formula is[17,19] 
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where r1 is a random number from 0 to 2π, and r2 is a 
random number from 0 to 2. 

Lévy flight refers to the probability of step size, which 
is a random walk with heavy tail distribution. Its advan-
tage is that continuous small steps and occasional large 
strides occur randomly, which can expand the search 
range. In this way, we can jump out of the local optimum 
and achieve the purpose of global search. The improved 
formula is as follows[19,20] 
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where 1
p
tX  is the best position for the current discoverer, 

and Lévy formula is 
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where r3 and r4 are random numbers within the range of 
[0,1], ρ can be taken as 1.5, and σ is calculated as follows 
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where 
( ) ( 1)!.Γ x x                                                 (16) 

In the following, PSO, GA, basic SSA and ISSA are se-
lected to compare the selected basic functions for perform-
ance test results, and the common parameters of the four 
algorithms PSO, GA, SSA and ISSA are uniformly set[21]. 

Tab.1 Test function 

Function expression Data range Optimum solution 
F1 [-100, 100] 0 
F3 [-100, 100] 0 
F7 [-1.28, 1.28] 0 

 
In the above table, formula F1, F3 and F7 are 
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It can be seen from Figs.2—4 and Tab.2 that both SSA 
and ISSA find the optimal value in F1 and F3 test func-
tions, while GA and PSO algorithm do not find the opti-
mal value. Although both SSA and ISSA find the opti-
mal value, the worst value and average value of ISSA are 
much better than SSA. In the F5 test function, although 
the optimal value of the four functions is not found, 
ISSA can obviously find the optimal value faster than the 
other three algorithms, and the optimal value of ISSA is 
the closest to the theoretical optimal value. Among all 
the test functions selected, ISSA has the lowest average 
value and the worst value compared with the other three 
algorithms, indicating that ISSA has the highest accuracy 
and the best stability. 

 

 
Fig.2 F1 test function convergence curve 

 

 
Fig.3 F3 test function convergence curve 

 

 
Fig.4 F7 test function convergence curve 

Tab.2 Test function result 

Test 
function 

Algo-
rithm Average value Optimum 

value Worst value 

PSO 0.386 33 0.216 61 0.599 17 
GA 1.696 0.668 99 7.602 5 
SSA 7.190 7× 

10-45 
0 2.157 2× 

10-43 F1 

ISSA 1.554 8× 
10-131 

0 4.664 3× 
10-130 

 PSO 23.627 2 7.567 1 34.507 2 
GA 20.199 4 10.627 1 39.742 9 
SSA 3.439 7× 

10-51 
0 1.031 9× 

10-49 F3 
ISSA 1.151 9× 

10-117 
0 3.455 8× 

10-116 
PSO 1.575 6 0.437 45 9.201 9 
GA 0.043 882 0.026 566 0.087 184 
SSA 0.000 294 87 1.615 7× 

10-5 
0.001 107 5 F7 

ISSA 8.281 3× 
10-5 

3.380 6× 
10-6 

0.000 366 65 

 
The specific flow of ISSA-ELM algorithm is as fol-

lows[20,21]. 
(1) Determine the topology of ELM algorithm. 
(2) The migration data of pneumatic imaging were 

analyzed and processed. 
(3) Initialize the SSA. 
(4) The fitness of each individual sparrow was calcu-

lated. 
(5) Update the position formula of sparrow finders and 

followers according to Eqs.(11—16). 
(6) Update the fitness and judge whether the maxi-

mum number of iterations or the set convergence accu-
racy is reached. If so, proceed to the next step; otherwise, 
return to (4). 

(7) The obtained group optimal individual value is as-
signed to the weight and threshold value in the ELM 
neural network. 

 

 
 

Fig.5 Flow chart based on ISSA-ELM algorithm
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ISSA-ELM uses ISSA to optimize the weight and 
threshold of ELM algorithm, so the four main factors 
affecting the imaging deviation are taken as the input of 
ELM algorithm. The prediction accuracies of ELM, 
SSA-ELM, and ISSA-ELM are compared. It provides a 
theoretical basis for the application of ISSA-ELM in 
aero-optical imaging migration prediction. 

In the experiment, 3 317 sets of data in the calculation 
of aircraft imaging deviation were selected. After nor-
malization of the data, 3 217 data were randomly se-
lected as the model training sample set, and the remain-
ing data were used as the model testing sample set. 

The advantages and disadvantages of the algorithm are 
evaluated by the mean absolute error (MAE), mean 
square error (MSE), determination coefficient and fitness 
between the prediction results of the test set and the real 
value. MSE is defined as[22] 

 2
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MAE is defined as
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where l is the total number of test samples, ˆiy  is the pre-
dicted value of the model, and yi is the actual value. 

The fitness curves of SSA-ELM and ISSA-ELM are 
shown in the following figures. 

By comparing SSA-ELM and ISSA-ELM, it can be 
found that the convergence speed of ISSA-ELM is nearly 
twice as fast, which shows that ISSA-ELM has fast itera-
tion times and can quickly find the optimal value. 

Figs.8—10 show the absolute error prediction results 
of different models. 

The following is the comparison diagram of the real 
value and predicted value of the three models (Figs.11—
13). 

 

 

Fig.6 Change diagram of SSA-ELM fitness curve 

 

Fig.7 Change diagram of ISSA-ELM fitness curve 
 

 

Fig.8 ELM prediction output absolute error 
 

 

Fig.9 SSA-ELM prediction output absolute error 
 

 

Fig.10 ISSA-ELM prediction output absolute error
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Fig.11 ELM test set prediction results 
 

 

Fig.12 SSA-ELM test set prediction results 
 

 

Fig.13 ISSA-ELM test set prediction results 
 
Tab.3 Comparison of prediction results of various 
models  

Model MSE R2 MAE 

ELM 4.138×10-7 0.830 92 0.003 924 0 
SSA-ELM 1.046 3×10-7 0.955 85 0.000 985 5 
ISSA-ELM 4.664 7×10-9 0.997 90 0.000 214 6 

 
Figs.8—10 are the absolute error comparison diagrams 

of ELM, SSA-ELM and ISSA-ELM models, respectively, 
and Figs.11—13 are the results comparison diagrams of 
the real value and predicted value of ELM, SSA-ELM 
and ISSA-ELM models, respectively. Through the analy-
sis and comparison of each model, we can know the fol-

lowing.  
In the algorithm model, the MAE can accurately reflect 

the size of the actual prediction error, that is, the smaller 
the MAE is, the higher the prediction accuracy of the 
model. It can be seen from Figs.8—10 that compared 
with ELM and SSA-ELM, the prediction accuracy of the 
ISSA-ELM model is better.     

The MSE can evaluate the degree of change of the data. 
The smaller the MSE, the better the accuracy of the pre-
diction model in describing the experimental data. In 
Figs.11—13, compared with the ELM and SSA-ELM, 
the ISSA-ELM has the smallest MSE, indicating that its 
accuracy is higher. 

The coefficient of determination represents the degree 
of correlation between the actual value and the predicted 
value. The closer the correlation coefficient of the algo-
rithm model is to 1, the better the algorithm model is. In 
Figs.11—13, compared with the ELM and SSA-ELM, 
the coefficient of determination of ISSA-ELM is the 
closest to 1, indicating that it can make a more perfect 
prediction of the target variable.  

Imaging deviation is due to the head flow field change 
caused by aircraft, aircraft flying in the actual process, 
not only a state of flight. When the flight state changes, 
head flow field will change, and imaging deviation will 
also change. We calculate the just some typical imaging 
deviation data, and the data is not enough in actual flight. 
Therefore, a reliable model is needed to quickly estimate 
the unknown data through the known imaging offset data, 
so that the aircraft can be compensated and corrected 
during the actual flight. 

It can be found that the SSA simply optimized the 
weights and thresholds in the ELM algorithm, which 
limited the data optimization in this paper and failed to 
achieve ideal improvement. This is because SSA, like 
other population algorithms, has weak global search abil-
ity and is easy to fall into local optimum. Therefore, the 
search space and search ability of the algorithm can be 
improved by the fusion of sine and cosine, and the ran-
dom walk characteristic of Levy flight can be used to 
avoid the algorithm falling into local optimum. Through 
the benchmark function test, it is proved that ISSA can 
find the optimal value faster than SSA, and ISSA is used 
to optimize the weights and thresholds of ELM neural 
network to improve the accuracy of the algorithm. Ac-
cording to the evaluation index of the algorithm, com-
pared with ELM and SSA-ELM models, the prediction 
accuracy of the ISSA-ELM model is better, and the 
global convergence and population diversity are guaran-
teed. It can predict the aero-optical imaging offset more 
quickly, accurately and stably. 
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