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Phase unwrapping based on deep learning in light field 
fringe projection 3D measurement* 
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Phase unwrapping is one of the key roles in fringe projection three-dimensional (3D) measurement technology. We pro-
pose a new method to achieve phase unwrapping in camera array light filed fringe projection 3D measurement based on 
deep learning. A multi-stream convolutional neural network (CNN) is proposed to learn the mapping relationship between 
camera array light filed wrapped phases and fringe orders of the expected central view, and is used to predict the fringe 
order to achieve the phase unwrapping. Experiments are performed on the light field fringe projection data generated by 
the simulated camera array fringe projection measurement system in Blender and by the experimental 3×3 camera array 
light field fringe projection system. The performance of the proposed network with light field wrapped phases using mul-
tiple directions as network input data is studied, and the advantages of phase unwrapping based on deep learning in light 
filed fringe projection are demonstrated. 
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Structured light three-dimensional (3D) measurement 
technology has attracted wide attention in recent years 
for their ability to provide 3D information with simplic-
ity, accuracy, high speed and non-contact property[1-3]. 
The 3D information is related to the phase in the de-
formed fringe pattern, and the phase is recovered by 
phase retrieval operator. However, the retrieval wrapped 
phase is truncated at (−π, π], which requires phase un-
wrapping to obtain a continuous phase[4-9]. 

With the successful applications of deep learning in 
the field of fringe projection 3D measurement[10-14], the 
phase unwrapping method based on convolutional neural 
network (CNN) has attracted more and more attention. 
Generally speaking, as to the deep learning based phase 
unwrapping methods, the first kind method is related to 
the single camera fringe projection 3D measurement 
system. For instance, for the prediction problem of 
wrapped phase to fringe orders, the most typical way to 
solve the problem with classification ideas based on deep 
learning is PhaseNet 2.0 proposed by SPOORTHI[15]. 
YIN et al[16] used the three-step phase shift method to 
obtain the wrapped phases corresponding to two differ-
ent frequency gratings and used them as the input of the 
network. On contrast to the first kind of deep learning 
phase unwrapping methods, another kind is based on 

binocular stereo cameras fringe projection. QIAN et al[17] 
built a multi-channel input network, and the fringe pat-
terns captured by two cameras, as well as the reference 
information are fed into network, and the output of net-
work is the fringe order map of the measured object in 
left camera.   

In addition, light filed can record the position and di-
rection information of the light ray at the same time to 
realize multi-viewpoint imaging[18,19]. CAI et al[20] com-
bined fringe projection structured light and light field 
camera imaging to propose a structured light field phase 
unwrapping method, which encodes the light field in-
formation and determines the fringe orders by comparing 
the phase consistency of the spatial candidate points in 
the light field. WANG et al[21] proposed a phase unwrap-
ping method for the fringe projection 3D system assisted 
by the light field to realize the phase unwrapping of iso-
lated complex objects.   

As mentioned above, deep learning based phase un-
wrapping is only devoted to single camera based or bin-
ocular cameras based fringe projection 3D measurement. 
To the best of our knowledge, deep learning has not been 
used in fringe projection 3D measurement based on light 
field camera. We introduce the deep learning method in 
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This part of work is completed by the recurrent residual 
CNN based on U-Net (R2U-Net). R2U-Net is imple-
mented by replacing U-Net’s encoding and decoding 

 
Fig.3 Diagram of the initial feature extraction network 
in Fig.2 

 

convolution unit with a more complex recurrent residual 
convolutional unit (RRCU). After each RRCU in the 
encoder network, there is a max pooling layer with a 
stride of 2×2 to reduce the spatial resolution of the fea-
ture maps. After each RRCU in the decoder network, an 
upsampling (transposed convolution) layer is used to 
restore the input spatial resolution. The kernel size of the 
convolutional layers in RRCU is 3×3. The number of 
output channels of the network output convolutional 
layer is determined by the range of the fringe order, and 
a 1×1 convolution kernel is used. 

As a classification task, the data output by the model 
with a dimension of batch 17×512×512 needs to go 
through a softmax operation to determine the category 
with the highest probability at each pixel, that is, the 
fringe order. In order to achieve the train of the proposed 
model, the cross-entropy loss function is used.  

The experiment was conducted on a PC equipped with 
NVIDIA GeForce RTX 3090 (24 GB), Intel Core

 

Fig.4 R2U-Net feature fusion model
 

i7-10700K @ 3.80 GHz 8 cores and 64 GB RAM for 
network training and testing. The network architecture is 
implemented based on the Pytorch framework version 
1.7.0+cu110 of Python 3.8.3. 

For the Blender simulation, the camera pitch is 80 mm 
and the focal length is 100 mm in camera array. A total 
of 12 fringe patterns with three frequencies and four-step 
phase shifts for obtaining phase information are loaded 
into the projector. The deformed fringe patterns on test 
objects are captured by camera array. In the process of 
data generation, a total of 40 groups of data were col-
lected from multiple angles of 13 computer aided draft-
ing (CAD) model objects, among which 30 groups were 
used for training, 5 groups were used for verification and 
the remaining 5 groups were used for testing. According 
to the range of fringe order of the simulation data, the 
number of output channels at the last layer of the net-
work is set as 17, in which there are 16 fringe order cate-
gories, and noise is divided into another category. These 
models have complex shapes and rich details to verify 
the performance of the proposed method. 

Fig.5 shows the schematic diagram of one direction 
(1-direction), two directions (2-directions), and four di-
rections (4-directions) as the network input. 

 

 

Fig.5 Schematic diagram of multi-directional data 

For a more comprehensive comparison, a single-view 
(center view of camera array) training method is added 
to the comparison, that is, only the single frame wrapped 
phase at the center view of camera array is used for train-
ing and predicting the corresponding fringe order. Due to 
the number of network parameters on the computer 
graphics card memory demand is large, only 3×3 view in 
the center area of 9×9 view of optical field data is se-
lected as the input of the network in this 
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section. 
The network training batch size is set to 2, the number 

of training times is 100, and the initial learning rate is set 
to 1×10-4 and attenuates to 1×10-5 at the 95th time of train-
ing. The data is enhanced by rotating 90° in training. After 
each training session of the training set, the prediction 
accuracy of the validation set is evaluated based on mean 
square error (MSE). The calculation method of MSE is 
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Tab.1 shows the prediction result errors of the four di-
rections, two directions, a single direction, and a single 
view training method on five test data. It can be seen that 
the sub-aperture wrapped phase input data in multiple 
directions can better improve the performance of the 
proposed multi-stream convolutional network model, 
and more accurate phase unwrapping can be realized. 

Tab.1 Fringe order prediction error comparison under 
multi-directional network input on simulated camera 
array light filed fringe projection data 

Input views Center 
1- 

direction 
2- 

directions 
4-

directions 
MSE 0.851 7 0.519 2 0.499 6 0.459 8 

 
As shown in Fig.6, based on two test samples, the pre-

diction results of the network under the above four input 
data forms are compared with the labels. It can be seen 
from the comparison diagram that when the sub-aperture 
wrapped phases in the four directions of the camera array 
are used as the network input data, the fringe order pre-
dicted by the network is more accurate. Compared with 
other schemes, the predicted values in the four directions 
have the highest degree of fit with the label, and basi-
cally coincide with the label curve.  
 

 

Fig.6 Comparison of multi-directional data prediction results 
 

In order to further verify the proposed method and ap-
ply it to measurement tasks in the real environment, this 
section conducts experiments on the fringe pattern data 
collected by the 3×3 camera array fringe projection 3D 
measurement system built in the laboratory environment. 
The established camera array light field fringe projection 
3D measurement system is shown in Fig.7. In the pro-
posed system, the 3×3 cameras simultaneously triggered 
by the projector can capture the deformed fringe pattern 
on the tested objects projected by the projector.  

In the process of data generation, 57 groups of data  
were collected from multiple angles of 7 plaster model  

 
objects, among which 32 groups were used for training, 
7 groups were used for verification, and the remaining 
18 groups were used for testing. According to the range 
of fringe order of experimental data, the number of out-
put channels at the last layer of the network is set as 23, 
which means that there are 22 fringe order categories, 
and background and noise are divided into another cate-
gory. The fringe patterns of some plaster models col-
lected are shown in Fig.8.  

In the training of this section, in order to form a sig-
nificant contrast in the experimental results and improve 
the experimental efficiency, the feature fusion network
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R2U-Net was simplified. The simplification was realized 
by reducing the number of encoders and corresponding 
decoders of R2U-Net from the original four to two. Dur-
ing the network training, the batch size was set as 2, the 
training times as 60, and the initial learning rate was set 
as 1×10-4 and attenuated to 1×10-5 in the 50th training. 
 

 
Fig.7 Real camera array light field fringe projection 
3D system 

 

 

Fig.8 Part of the plaster model fringe patterns 
 

Tab.2 shows the fringe order prediction result errors of 
4-directions, 2-directions, 1-direction, and a single view 
(center view) training method on 18 test data. The test  
error of the 4-directionsas input is the smallest, which is  

consistent with the experimental conclusions of the 
simulation scene data camera array multi-direction sub-
aperture images analysis section. 
 
Tab.2 Fringe order prediction error comparison under 
multi-directional network input on real camera array 
light filed fringe projection data 

Input views Center 
1- 

direction 
2- 

directions 
4-

directions 
MSE 0.531 7 0.467 8 0.423 8 0.392 1 

As shown in Fig.9, the prediction results of the net-
work of two tested samples under these above four input 
data forms are compared with the labels. It can be seen 
that the fringe order predicted by the network in the 4-
directions input form is the most accurate, giving the 
least wrong fringe order areas. In addition, a certain line 
of the fringe orders (the line marked by dotted line in 
label image) is shown in Fig.10, where the predicted 
fringe order values of 1-direction, 2-directions, and 4-
directions and the label are plotted. Compared with other 
form as input, the predicted values in the 4-directions as 
input have the higher degree of fitness with the label, 
which is closer with the label curve. Therefore, the real 
scene data results demonstrate the effectiveness of the 
method, and that the more directions light field wrapped 
phases as input of the network improve the accuracy of 
the fringe order prediction results. 

 

 

Fig.9 Fringe order prediction results on real data 
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Fig.10 Comparison of prediction results of a row in 
the real dataset: (a) Data1; (b) Data2 

 
Fig.11 shows the comparison results of the unwrapped 

phase obtained by the proposed multi-stream CNN and 
traditional quality guided methods. It can be seen that the 
results obtained using our proposed method are closer to 
the true unwrapped phase (multi-frequency phase-
shifting method as ground truth), compared with the 
quality guided method. Due to the inability of traditional 
quality guided phase unwrapping methods to hand with 
multiple isolated object phase unwrapping, the un-
wrapped phase obtained by quality guided method is 
higher than the true value. 
  In order to verify the network's noise resistance per-

formance, Gaussian noise with zero mean and variance 
of 0.02 is added on the original dataset and the noisy 
dataset is evaluated. Fig.12 shows the test results of the 
proposed network's anti-noise performance. It can be 
concluded that our proposed network has good noise 
resistance in phase unwrapping. 
 

 
Fig.11 Unwrapped phase result comparison with the 
quality guided phase unwrapping method 
 

In this letter, a new method based on deep learning is 
proposed to phase unwrapping in camera array light field 
fringe projection 3D measurement. The advantages of 
phase unwrapping based on deep learning to learn the  

 
Fig.12 Network input data and prediction results: (a) 
Input without noise; (b) Output from (a); (c) Input with 
noise; (d) Output from (c) 

 
mapping relationship between camera array light filed 
wrapped phases and fringe orders of the expected central 
view are demonstrated. Experimental results show that 
when using the wrapped phases in four directions as 
network input simultaneously, the better performance of 
the proposed multi-stream CNN model can be achieved 
and effective phase unwrapping can be realized. Our 
proposed method complements the existing deep learn-
ing phase unwrapping methods with only one camera or 
two cameras and paves a way to the deep learning based 
phase unwrapping. 
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