
OPTOELECTRONICS LETTERS                                                    Vol.19 No.12, 15 December 2023 

Electrical capacitance tomography image reconstruc-
tion based on iterative Tikhonov regularization improved 
algorithm* 

 
YAN Chunman** and ZOU Meng 
School of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070, China1 
 
(Received 4 April 2023; Revised 4 June 2023) 
©Tianjin University of Technology 2023 
 
Aiming at the problems of low reconstruction quality, poor robustness, and the inability to quickly and stably converge 
caused by the ill-posedness of electrical capacitance tomography image reconstruction, an improved algorithm based 
on iterative Tikhonov regularization (ITR) was proposed. The algorithm constructs a new objective function by intro-
ducing the Lp norm to carry out multi-criteria constraints, and introduces the result of the corrected Tikhonov regulari-
zation (TR) algorithm into the image reconstruction process together with the logarithmic weight factor as the esti-
mated value. At the same time, an acceleration strategy is used, and the residual term is exponentially filtered. Perform 
ablation, initial value sensitivity, convergence, and noise interference experiments on the improved algorithm and 
compare it with other common algorithms. Experimental results show that the improved algorithm can quickly and 
stably converge and has good robustness and initial value insensitivity. The reconstructed image quality is high, the 
average correlation coefficient (CC) can reach 0.963 3, and the average relative error (RE) can be reduced to 0.069 4. 
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Electrical capacitance tomography (ECT) is an essential 
subfield of process tomography (PT)[1], which is based 
on computed tomography (CT). The majority of ECT 
measurement objects are multiphase flows. Similarly, 
ECT technology has been widely developed and imple-
mented due to its excellent security, non-invasive visual 
measurement, and low cost[2-4]. Examples include gas 
fluidized bed measuring, flame structure identification, 
and non-destructive tree inspection. 

ECT technology is mainly divided into forward prob-
lems and inverse problems. ECT image reconstruction is 
a process for solving the inverse problem of ECT. The 
solution to the inverse problem of ECT is to restore the 
dielectric constant distribution in the field according to a 
certain image reconstruction algorithm by measuring the 
capacitance values between all electrode pairs and the 
sensitivity distribution obtained from the forward prob-
lem, and reconstruct the flow pattern in the form of an 
image. However, due to the non-uniqueness and instabil-
ity of the solution, the ECT inverse problem is inevitably 
ill-posed [5]. In the measurement, due to the inevitability 
of the existence of the medium in the field, the existence 
of the solution can be guaranteed. However, in practical 
applications, due to the limitations of sensor design and 
application scenarios, the projected value of the actual 
capacitance measurement is much smaller than the num-

ber of pixels required to reconstruct the image, so this 
problem is an underdetermined problem, and the solution 
is not unique, resulting in poor image quality in recon-
struction. Due to the "soft field" problem of ECT, the 
sensitivity distribution in the field is affected by the dis-
tribution of the medium and has a nonlinear relationship. 
When the capacitive signal is slightly disturbed, the im-
age will change greatly, so the solution is not stable, 
which makes it difficult to quickly and stably converge, 
and the robustness is poor. Due to the ill-posed nature of 
ECT image reconstruction, it is difficult to achieve satis-
factory results in reconstructed images. Therefore, more 
and more ECT reconstruction algorithms have been pro-
posed by researchers. Currently, image reconstruction 
algorithms are primarily categorized into three groups: 
direct algorithms, iterative algorithms, and intelligent 
algorithms. Common direct algorithms include the linear 
back projection (LBP) algorithm[6], the Tikhonov regu-
larization (TR) algorithm[7,8], etc. Although the direct 
algorithm has a simple structure, low calculation, and 
fast imaging speed, its imaging accuracy is relatively 
low. Compared to the direct algorithm, the iterative algo-
rithm has enhanced image quality. Such as the Landwe-
ber algorithm[9], the iterative Tikhonov regularization 
(ITR) algorithm[7], etc, but they are still limited by the 
defects of semi-convergence and slow convergence. In 
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recent years, an intelligent algorithm based on neural 
network[10] has also been proposed, but its development 
is also limited by the difficulty of obtaining training 
samples. Algorithms such as LBP and Landweber are not 
supported by prior information. Although the TR and 
ITR algorithms have prior information, a single piece of 
prior information is not enough to guarantee the quality 
of the reconstructed image. Therefore, more prior infor-
mation is needed to better support the process of recon-
structing images. And because the TR algorithm can ef-
fectively solve the inverse problem and has better stabil-
ity, in recent years, researchers have proposed new ob-
jective functions based on the TR framework for com-
plete image reconstruction. For example, the L1 or L2 
norm is deployed as a fidelity item, and the L1 norm, Lp 
norm, nuclear norm, etc are deployed independently or 
combined as regularization items[11-13], etc.  

Based on the above analysis, the article proposes a 
new objective function. The Lp norm is introduced on the 
basis of ITR, which can better balance the smoothness 
problem caused by the L2 norm while increasing the 
sparsity of the solution. The prior image estimation in-
formation obtained by the corrected TR algorithm and 
the logarithmic weight factor are added to the solution 
process of the new objective function. At the same time, 
an acceleration strategy is introduced, and the iterative 
residual term is exponentially filtered. In order to verify 
the effectiveness of the improved algorithm, ablation 
experiments are carried out and compared with common 
algorithms. Experimental results show that regardless of 
subjective quality or objective indicators, the reconstruc-
tion quality of the improved algorithm is better than that 
of other comparison algorithms. In order to further verify 
the practical application value of the algorithm proposed 
in this paper, initial value, convergency, and noise inter-
ference experiments are carried out. The experimental 
results show that the algorithm in this paper can con-
verge quickly and stably and has better initial value in-
sensitivity and robustness. 

ECT image reconstruction is the process of solving the 
ECT inverse problem. In the inverse problem, there is a 
nonlinear relationship between the capacitance and per-
mittivity distribution between electrode pairs, which can 
be expressed as 

 .C F            (1) 
Using Taylor expansion of the above equation and ig-

noring higher order terms, we can obtain 

 d .
d
FC 

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F


as the Jacobian matrix in continuous form, 

and discretize and normalize it to obtain 
, λ S g        (3) 

where λ is the normalized capacitance vector of m ca-
pacitance values measured by the ECT system, g is the 
n-dimensional permittivity distribution vector, and S is 
the sensitivity distribution matrix, that is, the 

m×n-dimensional normalized sensitivity matrix. The 
paper uses an 8-electrode ECT sensor, and marks 1, 2...8 
with any electrode as the starting point. First, apply an 
excitation electrode to electrode 1, give it a fixed voltage 
U, and then use electrodes 2, 3...8 as receiving electrodes 
to measure the capacitance values between 1—2, 
1—3,...1—8, respectively, and so on until the No.8 elec-
trode is measured, and a total of 2

8 28m C   capaci-
tance values can be detected. The paper uses triangles to 
divide the ECT sensor area into units, and divides 
n=3 228 effective areas of imaging units. The dissection 
diagram is shown in Fig.1. 
 

 

Fig.1 Triangulation results of ECT sensor field 
 

Because the ECT inverse problem (image reconstruc-
tion) is ill-posed, it is difficult to solve Eq.(3) in real life. 
The TR method can better transform the ill-posed prob-
lem into the optimization problem of the objective func-
tion for solving, so it has been widely used. It is repre-
sented as follows 

    1min ,n
i i iP Ω

g
g g           (4) 

where P(g) is the fidelity term, which is a measure of the 
accuracy of the solution. μ≥0 is called the regularization 
parameter. Ωi(g) is a regularization term. 

The TR method takes the cost function of the least 
squares method as P(g) items, and introduces the L2 
norm into Ωi(g) items to form the objective function, 
which is expressed as follows 

  2 2
2 2min ,     

g
Sg λ L g g        (5) 

where L is a matrix corresponding to a certain operation, 
which is usually set as the identity matrix I. g  is the 
estimated value of the solution obtained by some prior 
knowledge, and it is generally set to 0. According to the 
gradient of the objective function, the solution of the 
standard TR method can be expressed as 

  1T T .


  g S S I λS        (6) 
In order to further improve the TR method, the ITR 

method was proposed. Eq.(6) is improved to be 
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The value of the regularization parameter is more im-
portant, but because it requires a lot of calculations to get 
a suitable value, it is still based on empirical selection 
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in practical applications. 
Although the ITR method can effectively solve the 

ill-posed problem and has good stability, its effect is 
smooth and the image quality is poor. To solve this prob-
lem, based on the ITR framework structure combined 
with Eq.(4), a new multi-regularized prior knowl-
edge-constrained objective function is proposed, ex-
pressed as follows 

      1 1 2 2min .P Ω Ω  
g

g g g           (8) 

Deploy the L2 norm as a fidelity term, which is ex-
pressed as follows 

  2
2 .P   g Sg λ         (9) 

The design of the regularization term is crucial to im-
proving the image's quality after reconstruction. A single 
piece of prior information is not enough to guarantee the 
quality of image reconstruction; therefore, multiple 
pieces of prior knowledge are needed to support it. First, 
deploy the L2 norm as the regularization term of the first 
part, which is expressed as follows 

    2
1 2 .Ω   g L g g        (10) 

The solution obtained by the TR algorithm is used as 
the estimated value of g , and γ is the correction pa-
rameter.   

Secondly, in order to balance the problem that the L2 
norm imaging is too smooth and cannot better preserve 
the image detail information, the Lp norm is introduced. 
Studies have demonstrated that the Lp norm can signifi-
cantly reduce the number of pixels necessary for recon-
struction and produce a sparser solution than the L1 and 
L2 norms[14]. The second part of the regularization term is 
expressed as 

 2 .pΩ  g g         (11) 

According to Eqs.(9), (10), (11) and (4), the new ob-
jective function can be obtained, expressed as follows 

  2 2
2 2min ( ) .p         

g
Sg λ L g g g   (12) 

If μ is small, the new problem constructed is too close 
to the original problem and cannot be regularized. On the 
contrary, although the stability can be improved, it devi-
ates from the original problem and produces an invalid 
solution[15]. This paper selects 0.02 as the regularization 
parameter based on experience. 

To facilitate the implementation of the algorithm more 
easily[15], p g can be approximated as 2

2 ψg . ψ is a 

diagonal matrix with   1 /2p
k 

 
g diagonal ele-

ments, β is a correction parameter, and 0.001 is selected 
according to experience. [0,1]p  , τ takes a very small 
value. 

Finding the conjugate gradient of the objective func-
tion, let min 0  , which is expressed as follows 

T T T T T( ) .      S S ψ ψ L L g S λ L L g      (13) 
To improve the image quality following reconstruc-

tion, L in the formula is improved on the basis of I, 

namely L=I+ψ. Let T T T= ,  w S S ψ ψ L L  
T=T L L , which can expressed as follows 

 1 T .  g w S λ T g       (14) 
From the perspective of stable convergence of the al-

gorithm, the logarithmic weight factor mechanism is 
used to search for the global optimal and then search for 
the local optimal direction to iterate. Combining Eqs.(3) 
and (14), the revised formula is updated as follows 
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where δ is the weight factor, after a lot of repeated ex-
periments, when  2.7,  2.9   is more ideal.   is the 
relaxation factor. 

In order to further improve the quality of image recon-
struction, this paper introduces an exponential filter 
function to the residual vector rk

[16]. In the discrete state, 
the bilateral sequence exponential filter h(n) is 

         e 1 e 1 e 1 ,h n n kx n n k xh nh    
         (16) 

where k is the order of the exponential filter. η is the fil-
ter parameter, which is taken as 0.000 1. Let k=0, com-
bined with Eq.(15), the reconstruction formula of the 
improved algorithm in this paper can be described as 
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After a lot of repeated experiments,  1.0,  1.4  is 
more ideal. 

In order to improve the speed of image reconstruction, 
introduce an acceleration strategy[17] to achieve fast con-
vergence. Finally, its iterative formula is updated as 
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 2
1

1 1 1 4 ,
2k kt t                   (19) 

   1 11/ ,k k k k k kt t    g l l l              (20) 
where tk is the parameter used for the acceleration step, 
t0=1. Using the acceleration strategy can make the algo-
rithm converge quickly and stably, and reduce the 
amount of calculation. 

ECT image reconstruction was completed on a com-
puter with anIntel(R) Core(TM) i5-7500 3.40 GHz CPU 
and 16 GB memory. In order to verify the imaging capa-
bility of the improved algorithm, LBP, TR, TSVD, ART, 
Landweber, ITR, and the improved algorithm were se-
lected for comparative experiments. In the experiment, 
four common two-phase simulated flow patterns were 
selected as the research objects: core flow, bubble flow, 
circular flow, and laminar flow (respectively designated 
as flow patterns a, b, c, and d). To evaluate the imaging 
performance of the improved algorithm, it primarily 
conducts ablation, initial value, convergency, and noise 
interference experiments and compares it to other preva-
lent methods. 
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In order to quantitatively evaluate the quality of re-
constructed images, the relative error (RE) and correla-
tion coefficient (CC) are used as evaluation criteria, 
which are expressed as follows 

ˆ
ˆ

,RE 

 
 
g g

g
      (21) 
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where g represents the permittivity distribution obtained 
by the image reconstruction algorithm, ĝ is the true 
permittivity distribution in the pipeline, g  and ĝ are  

the average values of g and ĝ  respectively, and D is 
the dimension of g and ĝ . When the RE is smaller and 
the CC is larger, it means that the quality of the recon-
structed image is higher. 

In order to visually verify the image reconstruction ef-
fect of the improved algorithm, ablation experiments are 
carried out on the improved algorithm. The results are 
shown in Tab.1. The selection of iteration times is deter-
mined by numerical experiments. Part A represents the 
application of the newly proposed objective function. 
Part B represents the exponential filtering of the residual 
term. Part C represents the introduction of the accelera-
tion strategy. T represents the reconstruction time. 

Tab.1 Results of ablation experiment 

ITR A B C Flow pattern a 
RE (%)/CC (%)/T (s) 

Flow pattern b 
RE (%)/CC (%)/T (s) 

Flow pattern c 
RE (%)/CC (%)/T (s) 

Flow pattern d 
RE (%)/CC (%)/T (s) 

    

13.52/78.02/71.48 15.29/80.48/73.17 37.26/53.51/71.02 20.57/79.57/75.66 

    

10.45/87.95/3.03 14.60/85.29/3.67 14.99/86.52/3.08 13.43/91.55/3.04 

    

9.28/89.61/3.08 9.48/92.71/3.65 8.14/95.53/4.04 10.11/94.96/3.59 

    

3.48/98.37/1.79 8.33/94.31/1.99 6.11/97.43/1.98 9.85/95.21/1.96 
 
It can be seen from Tab.1 that when parts A, B, and C 

are integrated in turn, the objective indicators and sub-
jective quality are significantly improved. In terms of 
objective indicators, when parts A, B, and C are inte-
grated in sequence, the average RE drops to about 
0.133 7, 0.092 5, and 0.069 4, respectively. Compared 
with the ITR algorithm, it is about 38.27%, 57.29%, and 
67.96% lower, respectively. The average CC can reach 
about 0.878 3, 0.932 0, and 0.963 3, respectively, which 
is about 20.48%, 27.85%, and 32.14% higher than the 
ITR algorithm. Compared with the ITR algorithm, the 
reconstruction time of the improved algorithm is also 
reduced, with an average of about 1.93 s. In terms of 
subjective quality, when part A is integrated, the quality 
of the reconstructed image is significantly improved, but 
there are still artifacts, and the details and edge informa-
tion are not clear. When integrated into part B, the recon-
structed image's artifacts and detail information are 
greatly enhanced, but the edge information is still biased 
and there are a small amount of artifacts. When inte-
grated into part C, the artifacts of the reconstructed im-
age are eliminated, the details and edge information can 
be better preserved, and the reconstructed image is closer 
to the original flow pattern. Thus, the efficacy of the im-

proved algorithm has been confirmed.  
In order to quantitatively evaluate the quality of the 

reconstructed image, this paper compares the objective 
indicators RE and CC of each algorithm, and the results. 

In Tabs.2 and 3, a, b, c, and d represent four flow pat-
terns. In this paper, the truncation parameter of the 
TSVD algorithm in the comparison algorithm is selected 
as 0.02[11]. The regularization parameters of both the TR 
algorithm and the ITR algorithm are selected as 
0.000 01[9]. The iterative algorithm is iterated 100 times 
to reconstruct the image. From Tabs.2 and 3, for the re-
construction of the four flow patterns, the RE of the im-
proved algorithm is 0.039 5, 0.083 2, 0.061 2, and 
0.099 7, which is about 52.81%, 34.44%, 75.32%, and 
68.07% lower than the ITR, respectively. CC is 0.982 1, 
0.943 3, 0.974 2, and 0.950 9 in turn, which are respec-
tively 5.64%, 9.28%, 44.48%, and 85.11% higher than 
ITR. The objective index of the improved algorithm is 
better than other algorithms, which verifies the effec-
tiveness of the algorithm and proves that the quality of 
the reconstructed image is high. 

In order to compare the imaging effect of each algo-
rithm more subjectively, the subjective quality of images 
reconstructed by each algorithm is compared, and the 
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results are shown in Tab.4. 

Tab.2 Image RE (%) 

 
Tab.3 Image CC (%) 

 
Tab.4 Image reconstruction results 

 
The first row of the table represents the original flow 

diagram of flow types a, b, c, and d. It can be seen from 
Tab.4 that the images reconstructed by the comparison 
algorithms all have obvious artifacts and blurred edges. 
For the direct algorithm, although the LBP algorithm can 
perform real-time imaging, the reconstructed image has 

larger deformation and distortion. Although the TR algo-
rithm can maintain the stability of the solution well, the 
reconstructed image is too smooth, and details are lost. 
Although the TSVD algorithm can be reconstructed in 
real time, its imaging quality is still lacking. For the it-
erative algorithm, the quality of the reconstructed image 
is generally better than that of the direct algorithm. Al-
though ART and Landweber algorithms have low com-
putational costs, they have no prior information support, 
have semi-convergence, poor image quality, and poor 
stability. Although the ITR algorithm has relatively good 
stability, the imaging is still too smooth. For the im-
proved algorithm, although the edge information of flow 
types b and d will be slightly lost, the overall quality of 
the reconstructed image is high, the existence of artifacts 
is eliminated for the four flow types, the details of the 
reconstructed image are relatively complete, and the 
edges are clearer. This further proves that the improved 
algorithm can obtain higher-quality reconstructed images 
than other algorithms. 

In general, the selection of distinct initial values has an 
effect on the outcome of picture reconstruction. At the 
same time, the sensitivity of the initial values of the al-
gorithm can also be used to evaluate its performance. 
Therefore, in order to verify the initial value sensitivity 
of the algorithm, LBP, TSVD, and TR were selected as 
the initial values of the improved algorithm for compari-
son. The results are shown in Fig.2. 

 

 
Fig.2 Comparison of different initial values  

The histograms in the left and right parts of Fig.2 rep-
resent CC and RE, respectively. It can be seen from Fig.2 
that although the imaging result of flow pattern c is infe-
rior to other flow patterns when TSVD is used as the 
initial value, overall, the improved algorithm is less de-
pendent on the initial value, especially for flow pattern b, 
where the fluctuations of CC and RE are only about 
1.30% and 0.89% on average. Therefore, no matter 
which one of the direct algorithms is selected as theinitial 
vector, it has high imaging quality. Thus it is proved that 
the improved algorithm has initial value insensitivity. 

In order to verify the convergence of the improved al-
gorithm, the result of the TR algorithm is selected as the 
same initialization vector. The improved algorithm is 
compared with the ITR algorithm for 1 000 iterations.

 LBP TR TSVD ART 
Land- 
weber 

ITR Ours 

a 40.81 14.33 12.27 10.18 14.38 8.37 3.95 

b 36.54 19.27 17.37 13.65 15.90 12.69 8.32 

c 53.55 40.27 35.85 34.43 38.15 24.80 6.12 

d 36.77 25.27 28.17 22.89 19.49 31.22 9.97 

 LBP TR TSVD ART 
Land- 
weber 

ITR Ours 

a 41.66 76.07 81.20 85.55 76.23 92.97 98.21 

b 42.50 74.69 77.66 84.14 79.21 86.32 94.33 

c 27.12 48.87 52.48 56.27 52.44 67.43 97.42 

d 73.61 65.49 55.87 74.85 81.68 51.37 95.09 

Algorithm 

a b c d 

LBP 

    

TR 

    

TSVD 

    

ART 

    

Landwe-
ber 

    

ITR 

    

Ours 
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The results are shown in Figs.3 and 4. 
 

 

Fig.3 Comparison of CCs for each flow pattern 
 

 

Fig.4 Comparison of REs for each flow pattern  
 

Figs.3 and 4 show the objective quality change trend 
of reconstructed images using the ITR algorithm and an 
improved algorithm under different iteration steps and 
enlarge their local information. From the figure, it can be 
seen that the comparison algorithm ITR did not reach 
stable convergence with the increase of iteration steps, 
and even for popular b and d, CC shows a downward 
trend with the increase of iteration steps, and RE shows a 
rising trend. The improved algorithms all reach stable 
convergence within 50 steps, and the CC is stable above 
90% and the RE is stable below 10%, which is better 
than the comparison algorithm. At the same time, com-
bined with Tab.1, it can be seen that the average time for 
image reconstruction using the improved algorithm is 
1.93 s, which is better than the ITR algorithm. Therefore, 
the improved algorithm can converge faster and more 
stably than the ITR algorithm. 

The ill-posedness of ECT image reconstruction causes 
the reconstruction image quality to be greatly disturbed 
by the change in capacitance data. Therefore, in order to 
verify the robustness of the improved algorithm, 2%, 4%, 
and 6% noises were added to the capacitance data to bet-
ter simulate the actual environment and test the imaging 
quality. The ITR algorithm and the improved algorithm 
were used for image reconstruction, and the comparison 
results are shown in Tab.5. 

It can be seen from Tab.5 that the overall robustness of 
the improved algorithm is better than that of the ITR 
algorithm. With the increase in noise level, the four flow 

patterns a, b, c, and d reconstructed by the ITR algorithm 
have obvious distortion. The three flow diagrams of a, b, 
and d reconstructed by the improved algorithm have no 
obvious distortion, and the detailed information is rela-
tively complete. But for the c flow type, the image will 
be deformed to a certain extent due to its fine detail in-
formation. In order to further verify the robustness of the 
improved algorithm, the improved algorithm under dif-
ferent noise levels is compared with the objective imag-
ing indicators of other algorithms by taking 50 averages, 
and the results are shown in Figs.5 and 6. 
 
Tab.5 Image reconstruction results of each flow pat-
tern under different noise levels 

Noise level Flow 
pattern 

Algo-
rithm 0% 2% 4% 6% 

ITR 

    a 

Ours 

    

ITR 

    b 

Ours 

    

ITR 

    c 

Ours 

    

ITR 

    

 
 
 
d 

Ours 

    
 
It can be seen from Figs.5 and 6 that with the increase 

in noise level, the objective evaluation indexes RE and CC 
of the image reconstructed by the improved algorithm are 
better than those of other comparison algorithms. For flow 
patterns a, b, and d, the trend graph is relatively flat. With 
the increase in noise level, CC can be kept relatively stable 
above 90% on average and RE below 10%. For flow type 
c, although its trend graph is not stable as the other three 
flow types, the improved algorithm can still maintain a 
higher imaging ability than other comparison algorithms. 
The experimental results prove that the image recon-
structed by the improved algorithm is less disturbed by the 
capacitance data, which further verifies that the improved 
algorithm has better robustness. 
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Fig.5 Flow pattern (a, b) trend chart 

 

 
Fig.6 Flow pattern (c, d) trend chart 

 
Aiming at the ill-posedness of ECT image reconstruc-

tion, an improved algorithm based on ITR was proposed. 
The experimental results show that the improved algo-
rithm can converge more quickly and stably, with high 
reconstructed image quality and good initial value insen-
sitivity and robustness. 
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