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To solve the problems of pulse broadening and channel fading caused by atmospheric scattering and turbulence, mul-
tiple-input multiple-output (MIMO) technology is a valid way. A wireless ultraviolet (UV) MIMO channel estimation 
approach based on deep learning is provided in this paper. The deep learning is used to convert the channel estimation 
into the image processing. By combining convolutional neural network (CNN) and attention mechanism (AM), the 
learning model is designed to extract the depth features of channel state information (CSI). The simulation results 
show that the approach proposed in this paper can perform channel estimation effectively for UV MIMO communica-
tion and can better suppress the fading caused by scattering and turbulence in the MIMO scattering channel. 
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Wireless ultraviolet (UV) scattering communication can 
realize non-line-of-sight (NLOS) information transmis-
sion and meet the needs of some special communication 
scenarios[1]. However, due to its strong scattering char-
acteristics, UV communication has the problems of pulse 
broadening and channel fading[2], the transmission power 
of the signal is limited, and the channel multiplexing rate 
is low. Introducing multiple-input multiple-output 
(MIMO) technology[3] to wireless UV communication, 
multiple transmitters and receivers are used to combat 
pulse broadening and signal attenuation caused by scat-
tering and turbulence, which can greatly improve the 
performance of wireless UV communication system at 
low transmission power[4]. 

At this stage, there are many studies on channel esti-
mation in various MIMO communication systems. The 
commonly used MIMO channel estimation methods and 
theories include minimum mean square error (MMSE) 
estimation[5], least square (LS) estimation[6], compressed 
sensing[7], Bayesian estimation[8], and multilayer percep-
tron (MLP) estimation[9], etc. For orthogonal frequency 
division multiplexing (OFDM) systems, a time-varying 
channel estimation method using two training symbols 
combined with polynomial fitting is proposed[10]. Diver-
sity multiplexing technology is an important means to 
improve the performance of MIMO communication sys-
tems. The use of space diversity multiplexing technol-
ogy[11] on NLOS UV links can reduce the fading caused 
by turbulence. There are also some researches on channel 

estimation for UV NLOS scattering communication[12,13], 
but they are limited to single-input single-output (SISO) 
systems. The problem of channel estimation in UV 
MIMO systems is still in the blank stage, and the appli-
cations of traditional nonlinear algorithms in UV com-
munication have some defects, such as poor privacy, 
high complexity, and the need for prior channel charac-
teristics, etc. To solve this problem, in this paper, deep 
learning technology is integrated into the UV MIMO 
communication system's channel estimation. Considering 
the sparseness of the two-dimensional channel state in-
formation (CSI) matrix in free space optical (FSO) 
communication[14], the MIMO channel estimation prob-
lem can be transformed into image processing. Deep 
learning has strong feature extraction and autonomous 
learning ability to obtain more complex channel charac-
teristics[15]. Various neural network structures can be 
used as learning models to realize channel estimation of 
MIMO systems, including deep neural network 
(DNN)[16], convolutional neural network (CNN)[17], gen-
erative adversarial network (GAN)[18], and recurrent 
neural network (RNN)[19], etc. It is also an effective 
means to improve the accuracy of channel estimation by 
introducing neural network to improve the traditional 
channel estimation algorithms. 

For the past few years, deep learning techniques have 
made some advancements in MIMO channel estimation. 
Several research results have been achieved, leading to 
improved performance compared to traditional channel 



·0036·                                                                          Optoelectron. Lett. Vol.20 No.1 

estimation methods. For example, an autoencoder 
(CNNAE) classifier based on a CNN utilized for channel 
estimation is proposed, which have demonstrated superior 
performance compared to traditional methods[20]. Attention 
mechanism (AM) is a widely used technique in deep 
learning that enhances the performance of neural net-
works. By imitating the AM of the human brain, AM en-
ables the model to concentrate on specific parts or features 
of the input data, thereby improving overall performance. 
For traditional massive MIMO systems, a novel atten-
tion-assisted deep learning channel estimation framework 
is proposed in 2022[21]. This framework effectively inte-
grates AM into a fully connected neural network. The re-
sults demonstrate that the channel estimation performance 
is greatly enhanced with the assistance of the AM. In the 
same year, a CNN-based channel estimation method is 
proposed for millimeter-wave large-scale MIMO commu-
nication systems, simplifying the conventional estimation 
process[22]. In summary, introducing neural networks to 
enhance traditional channel estimation algorithms is an 
effective means of improving the accuracy of channel es-
timation. Promising results have been always shown by 
deep learning in various MIMO systems. 

In this letter, deep learning is used to NLOS UV 
MIMO communication and a neural network-based 
wireless UV MIMO scattering channel estimation 
method is presented. We use the CNN to output a 
high-precision CSI matrix to extract the UV MIMO 
channel's statistical properties accurately, which serves as 
a foundation for future signal detection, thereby improv-
ing the performance of the communication system. 

The study object is a uniformly distributed wireless 
UV MIMO communication system. Fig.1 shows the UV 
MIMO single scattering channel model composed of M 
transmitting antennas and N receiving antennas. (T1, 
T2…, TM) are M transmitting antennas, (R1, R2…, RN) are 
N receiving antennas, d is the communication distance, 
βT and βR are the transmitting elevation angle and re-
ceiving elevation angle respectively, θT is the beam di-
vergence angle, θR is the field of view angle for the re-
ceiver, and ϕT and ϕR are the off-axis angles. The spacing 
between adjacent transmit antennas is u. The 
above-mentioned channel geometry parameters and at-
mospheric turbulence environment parameters jointly 
determine the channel characteristics. 

 

Fig.1 Wireless UV MIMO single scattering channel 
model  

In the proposed scheme, we adopt the pulse position 
modulation (PPM) method with intensity modulation and 
direct detection (IM/DD) for the UV signal and assume 
that the transmitted beam is small enough. The correla-
tion between the light signals received by the small ap-
erture can be ignored. For the MIMO channel shown in 
Fig.1, the signal sent by the ith transmitter is denoted by 
xi, the signal received by the jth receiver is denoted by yj, 
and the channel response coefficient between the ith 
transmitter and the jth receiver is hij. The received signal 
expression is as follows 

 y Hx N ,                               (1) 
where H is the channel response matrix, and N denotes 
the additive white Gaussian noise (AWGN). For the 
M×N UV MIMO system, Eq.(1) can be expressed as 
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Based on the investigation of the NLOS UV sin-
gle-scattering channel[23], a simplified approximate ex-
pression for the channel impulse response has been de-
rived, which is as follows 

2
s e

3

sin( ) exp( )
( ) ,

4π sin( )(1 cos )
2

R T R T
ij

T
ij T

k k ct
h t

r

   




 



         (3)   

where ks is the scattering coefficient and ke is the extinc-
tion coefficient, c is the lightspeed, and rij is the distance 
between the ith transmitter and the jth receiver. 

Assuming that the channel state information between 
the transmitting end and the receiving end is known[24], 
the bit error rate (BER) of the MIMO communication 
system can be expressed as    
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where 2
x  and 2

v  are the power spectral densities of 
the UV transmission signal and AWGN, respectively. I0 
is the luminous intensity satisfying log-normal distribu-
tion. η is the photoelectric conversion efficiency of the 
UV detector. N(∙, ∙) is the Gaussian distribution function. 
Q(∙) is the complementary cumulative distribution func-
tion, which is specifically expressed as 

21 1( ) exp( )d .
22πx

Q x t t
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                   (5) 

In addition to atmospheric scattering and absorption, 
the optical power attenuation that occurs after the UV 
signal is transmitted through the channel is also related to 
the scintillation attenuation (SA) caused by atmospheric 
turbulence. For the line-of-sight (LOS) link in the case of 
the plane wave, the SA caused by turbulence can be ap-
proximated by Rytov theory[25] as 

2 7/6 11/62 23.17 (2π / ) ,nC d                  (6) 

where 2
nC  is the refractive index structure parameter, 

which is used to measure the intensity of atmospheric 
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turbulence. λ is the UV wavelength. d is the communica-
tion distance. Similar to the study of single scattering[23], 
the NLOS link is also regarded as the sum of two LOS 
links, d1 is from the transmitter to the scattering volume 
and d2 is from the scattering volume to the receiver, re-
spectively.  

In this paper, we use the logarithmic normal (LN) dis-
tribution model to describe the UV signal intensity dis-
tribution. To facilitate the calculation, the transmission 
signal intensity is normalized, and the probability density 
function can be expressed as[26] 
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where I is the fluctuation of light intensity. 〈∙〉 is the av-
erage operation. 2

I  is the logarithmic intensity fluctua-
tion variance of the transmitted optical signal, which can 
be expressed as  

 2 2exp 4 1,I X                            (8) 

where 2
X  is the variance of the logarithmic amplitude 

variable X, related to 2
nC  at different atmospheric alti-

tudes h, specifically 
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As the UV photons reach the receiving end after single 
scattering, the conditional probability density function of 
the received optical signal intensity is 
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where 2
r  is the logarithmic intensity fluctuation vari-

ance of the received optical signal. According to the 
above derivation, the marginal probability density func-
tion of the received optical signal intensity can be ob-
tained as 

   rr r r t d( ) .f I I ff II I                    (11) 
The overall scheme of channel estimation of UV 

MIMO system based on CNN is shown in Fig.2. The 
transmission signal is sent out from multiple UV sources 
by space-time coding at the transmitting end and is re-
ceived by multiple UV detectors of the receiving end 
after passing through the atmospheric channel. Firstly, 
the initial channel state information, ie, the channel re-
sponse coefficient matrix, is estimated by the LS algo-
rithm, but this result does not consider the influence of 
noise and co-frequency interference. Next, the initial 
estimation result is used as the input of the neural net-
work to obtain high-precision channel state information. 
After the nonlinear mapping of the network, the final 
result is the channel state information enhanced by CNN. 

The deep learning based UV channel estimation 
scheme in this paper is an optimization of the channel 

estimation module of the whole UV communication sys-
tem. The final output of the network is the high accuracy 
CSI state information which is used to estimate and pre-
dict the original input signal before passing through the 
UV turbulent channel and then using this estimated sig-
nal to continue into the subsequent communication sys-
tem module to complete the whole communication proc-
ess. 

 

  

Fig.2 Channel estimation scheme of UV MIMO system 
based on neural network 

The initial estimation of LS is carried out by using the 
random training sequence and received signal, and the 
result is a two-dimensional channel response coefficient 
matrix, which is converted into an image and used as the 
input of the neural network, as shown in Fig.3. The core 
of the CNN model designed in this scheme is a 
three-layer network, including a pooling layer and two 
convolutional layers. A high-precision CSI matrix is re-
constructed through the CNN to eliminate noise and 
other interference items, thereby obtaining more accurate 
channel state information. 

 

 
Fig.3 CNN model structure 

 
In the designed CNN of this paper, the max-pooling 

method is utilized to reduce the model size and the data 
space occupied by the network. The size of the pooling 
window is set to 2×2, which reduces the input image to a 
quarter of its original size. The depth of the feature map 
in the pooling layer is set to 6. Two convolutional layers 
are set up for feature extraction and nonlinear mapping, 
respectively, as shown in Fig.3. The size of the convolu-
tion kernel is set to 3×3. The size of the feature map of 
the first step convolution is set to 32×32, which is di-
vided into N1 layers, and the size of the feature map of 
the second step convolution is set to 24×24, which is 
divided into N2 layers. To speed up the convergence 
process, rectified linear unit (ReLU) is used as the acti-
vation function in all layers of the network, which is ex-
pressed as 

   maRe x .LU ,0x x                       (12)
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The deep learning methods employed in channel esti-
mation in this paper fall under the class of regression 
prediction problems. Accordingly, the mean square error 
(MSE) function is chosen as the loss function, which is 
defined as follows 

2
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                   (13) 

where îjh  is the output predicted value of the network, 

ijh is the target output, and 2

2 is the 2-norm operation. 

The proposed AM-CNN channel estimation process 
mainly consists of three parts, namely the input layer, the 
network layer, and the output layer, as shown in Fig.4. 
The deep learning methods employed in channel estima-
tion in this paper fall under the class of regression pre-
diction problems. Accordingly, the MSE function is cho-
sen as the loss function, which is defined as follows. The 
input layer mainly needs to model the UV MIMO chan-
nel, and then generate the sample data set of channel 
characteristics and training sequences. The LS algorithm 
is used to estimate the initial CSI matrix as the input of 
the network layer. The task of the output layer is to re-
construct the high-precision channel estimation result 
through CNN. The training process of CNN is to calcu-
late the loss error between the target information in the 
input layer and the final result of the output layer, and 
use the Adma algorithm to iteratively optimize the 
model, which can adaptively update the parameters. 

 

 
Fig.4 AM-CNN channel estimation flow chart 

 
To improve the feature extraction ability and accuracy 

of the network layer, the AM is applied to the construc-
tion of CNN[27]. AM achieves selective processing of 
input data by assigning weights to different elements of 
the input data. These weights reflect the importance of 
each input element to the output, allowing the model to 
selectively rely on the contributions of various elements. 
By assigning weights, the AM makes the model adap-
tively focus on parts of the input data that have different 

importance. The shallow features extracted by CNN are 
input into AM network, and then further fused with the 
features extracted by convolution (Conv) and batch nor-
malization (BN) to obtain deep features. Finally, the 
deep features are noise filtered by the deconvolution op-
eration, and then output through the fully connected 
layer. The AM operation process is mainly divided into 
three stages, and the specific steps are as follows. 

Step 1: The initial CSI matrix extracted from the con-
volutional layer is composed of a series of (h, key), and 
given a target element , (0 ,0 )i jh i M j N    , where 
M and N represent the dimensions of the MIMO antenna 
matrix. In the attention layer, the similarity between ,i jh  
and each keyt (0≤t≤MN) is calculated by performing the 
inner product operation of two vectors, and the expres-
sion is 

 , ,similarity , .i j t i j th key h key                (14) 
Step 2: To deal with the inconsistency of the value 

range of the numerical results generated in Step 1, the 
SoftMax function is used for numerical conversion and 
normalization. The operation is as follows 
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Step 3: Calculate the corresponding weight coefficient 
when at is ht, and then weighted sum to obtain the atten-
tion value. The expression is 

  1
Attention , .MN

t t t tt
a h a h


                  (16) 

To verify the effect of the channel estimation scheme 
proposed in this paper, we conduct simulation experi-
ments on the UV MIMO channel model and the 
AM-CNN channel estimation method by MATLAB and 
Python. The basic simulation parameters of the UV 
MIMO communication system are set as follows, 
λ=255 nm, area of receiving aperture is Ar=1.77 cm2, (ks, 
ke)=(0.74, 0.49) km-1, the emitted pulse power is 
Pt=100 mW, communication rate is Rb=1 Mbit/s, (θT, 
θR)=(15°, 15°), and the separation distance between ad-
jacent transmitting antennas is u=5 m. Taking the 3×3 
MIMO channel as an example, we analyze the correla-
tion characteristics of the scattering channel. For the 3×3 
channel response matrix, according to the positions of 
different transmitting and receiving antennas, h11, h22, h33 
are coplanar, and h12, h21, h23, h32, h13, h31 are noncopla-
nar. Different communication distances d will cause the 
channel response coefficients to change, as shown in 
Fig.5. Under the same position condition, the pulse 
broadening will become larger with the increase of d. 
When the position conditions are different, the channel 
response amplitude under noncoplanar condition is lower 
than that under coplanar condition, and the pulse broad-
ening becomes larger, because the existence of off-axis 
angles will lead to more serious scattering attenuation. 

For the weak turbulence environment, the turbulence 
intensity is fixed, i.e., 2 16 2/310 mnC   . Fig.6 shows the 
probability density function (PDF) of the optical signal 
intensity under different communication distances and 
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elevation angles. It can be seen from Fig.6 that with the 
increase of the communication distance and elevation 
angles, the variance of the received optical signal PDF 
intensity gradually increases, that is, the signal energy 
attenuation increases accordingly. 
 

 

Fig.5 Channel impulse responses at different com-
munication distances 

 

 

Fig.6 PDF curves of the received optical signal inten-
sity under different parameters 

Based on a 3×3 UV MIMO communication system, 
the neural network training data set is constructed 
according to the above channel characteristics. Taking 
MSE and BER as the measurement standard, the 
performance of the AM-CNN estimation method is 
simulated. The relevant settings of the neural network in 
this scheme are shown in Tab.1. 

According to the above simulation results of channel 
characteristics, the selected channel parameters are 
d=100 m, βT=βR=10°, 2 16 2/310 mnC   . The influence of 
different MIMO structures on the channel estimation 
performance of AM-CNN under two scintillation 
variances 2

r is analyzed, as shown in Fig.7. It can be 
seen from Fig.7 that with the increase of the number of 
transmitting and receiving antennas, the MSE and BER 
gradually decrease, and the performance of MSE and 
BER under MIMO is greatly improved compared with 
SISO. Besides, when the 2

r becomes larger, the 
performances of MSE and BER become worse. 
Therefore, for UV MIMO communication systems, the 
proposed scheme can effectively suppress the channel 
attenuation caused by scattering and turbulence effects. 

Tab.1 The proposed neural network hyperparameter 
settings 

Parameter Value 
Dropout 0.6 

Learning-rate 0.01 
Mini-batch size 10 

Data size 3 000 
Dataset split (train: test) 7: 3 
N1 (Convolution layer) 7 
N2 (Convolution layer) 5 

 

   
 

 

Fig.7 Channel estimation performance of different 
MIMO structures
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A performance comparison and analysis of various 
channel estimation schemes by calculating the MSE and 
BER under different signal-to-noise ratios (SNRs) is pre-
sented in Fig.8. Fig.8(a) shows that the MSE decreases 
with the increase of the SNR as a whole, that is, the esti-
mation performance continues to improve. The MSE per-
formance of AM-CNN proposed in this paper is signifi-
cantly improved compared to the LS estimation. The per-
formance of the traditional CNN model without intro-
ducing the AM can only approximate the MMSE estima-
tion, and the AM-CNN can obtain better MSE perform-
ance than the MMSE estimation after introducing the 
AM. Fig.8(b) shows that the BER curves of four channel 
estimation schemes decrease gradually as the SNR in-
creases, and compared with the other three channel esti-
mation methods, AM-CNN estimation has better BER 
performance. 

 

 

 

Fig.8 Channel estimation performance curves with 
different methods 

In conclusion, we use the CNN and AM to realize 
channel estimation in UV signal processing. It was 
experimentally confirmed that the proposed scheme can 
achieve better channel estimation effect under the UV 
MIMO structures with different numbers of transmitting 
and receiving antennas, and the performance of 
AM-CNN estimation is significantly improved compared 
with the traditional channel estimation methods of LS 
and MMSE. Indeed, the deep learning channel estimator 
proposed in this paper demonstrates its suitability for 
handling signal processing in wireless UV MIMO 
communication systems. In future work, the reliability of 
multi-scattering MIMO channel transmission in mobile 
scenarios will be the focus of our research. 
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