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InGaN multiple quantum well based light-emitting di-
odes with indium composition gradient InGaN quantum 
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To improve the internal quantum efficiency (IQE) and light output power of InGaN light-emitting diodes (LEDs), we 
proposed an In-composition gradient increase and decrease InGaN quantum barrier structure. Through analysis of its 
P-I graph, carrier concentration, and energy band diagram, the results showed that when the current was 100 mA, the 
In-composition gradient decrease quantum barrier (QB) structure could effectively suppress electron leakage while 
improving hole injection efficiency, resulting in an increase in carrier concentration in the active region and an im-
provement in the effective recombination rate in the quantum well (QW). As a result, the IQE and output power of the 
LED were effectively improved. 
Document code: A Article ID: 1673-1905(2024)02-0089-5 
DOI  https://doi.org/10.1007/s11801-024-3099-0 

 
 

                                                 
*   This work has been supported by the National Natural Science Foundation of China (No.62174148), the National Key Research and Develop-

ment Program (Nos.2022YFE0112000 and 2016YFE0118400), the Key Program for International Joint Research of Henan Province 
(No.231111520300), the Ningbo Major Project of ‘Science, Technology and Innovation 2025’ (No.2019B10129), and the Zhengzhou 1125 Inno-
vation Project (No.ZZ2018-45). 

**  E-mails: iefwang@zzu.edu.cn; ieyhliu@zzu.edu.cn 

Light-emitting diodes (LEDs) are mostly used in general 
lighting, traffic lights, advertising, television, etc[1-5]. 
However, the internal quantum efficiency (IQE) of LEDs 
drops sharply at high currents. After analysis, the main 
reason for the decrease in efficiency is the low efficiency 
of electron leakage and hole injection, the mobility of 
electrons is much higher than that of holes, resulting in 
electron overflow, causing serious energy loss[6], uneven 
carrier distribution, polarization field effects[7,8] and so 
on. In order to improve the problem of efficiency de-
cline, researchers have proposed many solutions. In or-
der to reduce the piezoelectric polarization field gener-
ated in the well layer due to the lattice-barrier mismatch, 
XU et al[9] proposed to use InGaN barriers with low In 
content and InGaN quantum wells (QWs) with relatively 
high In content, which reduces the lattice mismatch be-
tween the well layer and the barrier layer reduces the 
piezoelectric field. YEN et al[10] suggested using an 
n-type AlGaN layer under the active region, and KUO et 
al[11] proposed to use an InGaN barrier instead of a tradi-

tional GaN barrier to reduce the efficiency drop of the 
LED. Recently, KUO et al[12] designed LED structures 
with GaN-InGaN-GaN multi-layer quantum barriers 
(QBs), such that electrons and holes have a uniform dis-
tribution in the multiple quantum wells (MQWs). In or-
der to solve the problem of low hole injection efficiency, 
XIONG et al[13] designed an AlGaN-based step-like bar-
riers structure without an electron blocking layer, and 
improved the hole injection efficiency by removing the 
electron blocking layer. KARAN et al[14] increased the 
LED output power by introducing a gradient QW layer 
and adjusting the appropriate InGaN/GaN MQW base 
width. HENGSTELER et al[15] by introducing a compo-
sitionally step graded (CSG) InGaN barriers to achieve a 
higher IQE. It is well known that most researchers use 
InGaN/GaN based MQW to develop LEDs, and the 
quantum confinement Stark effect (QCSE) caused by 
strain-induced piezoelectric polarization of GaN-based 
LEDs is lower than that of InGaN based LEDs, which 
indicates that GaN devices' electron-hole wave function 
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overlap is higher than that of InGaN devices. The addi-
tion of Al to GaN further enhances this overlap, so In-
GaN/AlGaN based LEDs have higher photon confine-
ment and emission power, but the GaN-based barrier 
reduces the electron-hole spatial separation when the 
wavelength exceeds 410 nm. For near-UV LEDs, AlGaN 
QB has higher advantages than GaN[16,17]. However, the 
Al composition does not contribute to the generation of 
excitons, which makes InGaN a suitable choice for 
near-UV LEDs[18]. To achieve high IQE and output 
power in LEDs, most of the recombination process must 
take place in the active region. Therefore, holes and 
electrons must be largely confined to the QW region. 
JIANG et al[19] used the InGaN quantum barrier with a 
gradient-increased structure to increase the luminous 
power of the LED, but the two pairs of gradient-decrease 
structures cannot make the holes pass through the active 
region and move closer to the n-layer QW. The distribu-
tion of carriers in the active region is uniform. In this 
paper, we use five pairs of In composition gradient sub-
tracted barrier junctions to solve this problem, and in this 
study, we theoretically studied the influence of InGaN 
with gradient barrier structure on near-UV LEDs. The 
calculation results show that the barrier structure with 
reduced In composition gradient can weaken the energy 
band bending caused by the strong polarization problem, 
reduce the QCSE in the active region[20], and increase the 
electronic barrier height. It is difficult for electrons to 
leak to the p-type region through the active region, and at 
the same time reduce the hole barrier height, so that 
holes can easily enter the active region, improving the 
hole injection efficiency, and a large number of carriers 
enter the active region for effective recombination, and 
the problem of device efficiency degradation is allevi-
ated.  

As shown in Fig.1, the basic LED structure consists of 
a sapphire substrate, which is followed by a 200 nm 
Si-doped GaN buffer layer, a 3-μm-thick n-GaN layer, 
MQWs composed of five 4-nm-thick In0.08Ga0.92N wells 
(QWs) and six 10-nm-thick In0.02Ga0.98N barriers (QBs), 
a 20-nm-thick Al0.02Ga0.98N electron barrier layer, a 
15 nm Mg-doped (3.0×1018 cm-3) GaN layer is used 
above the EBL, which is the underlying reference struc-
ture for LED1. On the basis of LED1 structure, we pro-
posed to change six 10-nm-thick In0.02Ga0.98N barriers 
into In composition gradient (0.02, 0.03, 0.04, 0.05, 0.06, 
0.07) LED2 structure and In composition gradient minus 
(0.02, 0.07, 0.06, 0.05, 0.04, 0.03) LED3 structure. The 
specific structure is shown in Fig.1. 

In this numerical study, device simulations were per-
formed using the advanced physical modeling of semi-
conductor devices (APSYS) tool. APSYS software is 
used to calculate the electrical behaviour of all LEDs by 
solving the Poisson’s equation and the current continuity 
equation for electrons and holes. In this study, the elec-
trical and optical properties of the LED structure were 

analyzed in detail[21]. Simulation parameters include en-
ergy band shift ratio, radiation recombination coefficient, 
Shockley-Read-hall (SRH) recombination lifetime, and 
Auger recombination coefficient is set to be 0.58, 
0.5×10-16 m3/s, 100 ns, and 1×10-46 m6/s, respectively[22]. 
Other materials parameters of AlN and GaN, such as 
lattice constant, deformation potential, elastic constant, 
etc, are listed elsewhere[23]. The variation functions of 
electron and hole mobilities were calculated using the 
most commonly used Arora model[24]. All simulations 
are performed by assuming that the LED devices operate 
at room temperature.  

 

 

Fig.1 Schematics of the DUV-LED structure, and 
LED1, LED2, and LED3 structures 

 
To investigate the performance of the proposed struc-

ture, the energy band diagrams of the three structures 
LED1, LED2, and LED3 are obtained by using 
well-calibrated APSYS, as shown in Fig.2. The principle 
of improving hole injection and electron leakage is to 
reduce the effective barrier height of the valence band 
and increase the effective barrier height of the conduc-
tion band. The effective barrier height is defined as the 
energy difference between an energy band and its corre-
sponding quasi-Fermi level[25] and is a reliable parameter 
for evaluating the electron confinement ability and hole 
injection efficiency of a laser. Compared to the reference 
structure LED1, both LED2 and LED3 have increased 
effective electron barrier heights and decreased hole bar-
rier heights. The structural change in LED3 is the most 
noticeable, as its electron barrier height increases to 
291.45 meV from 274.89 meV in LED1, effectively 
preventing electron leakage from the active region to the 
p-type region. At the same time, the hole barrier heights 
of LED1, LED2, and LED3 are 339.99 meV, 
317.93 meV, and 313.69 meV, respectively, and the hole 
barrier height of LED3 is lower than that of LED1, 
which increases the efficiency of holes entering the ac-
tive region. This is mainly because for the gradient QB 
structure, the lattice mismatch between QW and QB is 
reduced, thus, this design generates less piezoelectric 
field, resulting in lower band bending. Therefore, the 
effective holes barrier height is reduced to improve hole 
injection efficiency, while the effective electrons barrier 
height is increased to reduce electron leakage. 
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Fig.2 Energy band diagrams and quasi-Fermi levels of 
(a) LED1, (b) LED2, and (c) LED3   

 
To further explore the performance of LEDs, we stud-

ied the output optical power and IQE of the three struc-
tures. Due to the strong electron confinement in the 
MQW, at the same time, a large number of holes can be 
injected into the active region. Therefore, the IQE of the 
designed LED3 is higher than that of conventional 
LEDs, reaching 57.2% at a current density of 80 mA, as 
shown in Fig.3(a). Compared with the conventionally 
structured LED, the IQE decrease rate of the designed 
LED3 becomes slower with the increase of injected cur-
rent, indicating that the designed LED3 has higher radia-
tive recombination within the MQW. As shown in 
Fig.3(b), our conclusion is verified. With the increase of 
the current, when the current reaches 100 mA, the power 
of LED3 reaches 176.2 mW compared with LED1 
(91.3 mW), an increase of 92.9%. Therefore, the de-

signed LED3 can effectively solve the problem of effi-
ciency drop caused by carrier overflow when large cur-
rent is injected[26]. 

 

 

 

 

Fig.3 (a) IQEs, (b) output power, and (c) radiative re-
combination rates of three structures 

Next, we studied the carrier concentration and radia-
tive recombination efficiency of the three LED struc-
tures, as shown in Fig.4. To achieve high IQE and output 
power in LEDs, most of the recombination process must 
take place in the active region. Due to the large effective 
mass and low mobility of the holes, it is difficult for the 
holes to reach the QW close to the n-layer. Therefore, 
the distribution of holes in the active region is not uni-
form compared to electrons. In the optimized LED3 
structure, the concentration of electrons in the last QW 
near the p-side layer increases, the concentration of holes 
in the first QW near the n-side layer increases, and the
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distribution of holes and electrons in the LED3 structure 
is more uniform than that of LED1, as shown in Fig.4(a) 
and (b). As shown in Fig.4(c), the radiative recombina-
tion rate is more uniform in the QW of the optimized 
LED3, because the electron and hole concentrations are 
more, the distribution is uniform, and the electron and 
hole overlap is larger for the optimized LED3 structure. 
 

 

 

 

Fig.4 (a) Electron concentrations in the MQWs, (b) 
hole concentrations in the MQWs, and (c) stimulated 
recombination rates in the MQWs for LED1, LED2 and 
LED3 

To further verify the ability of LED3 to suppress elec-
tron leakage, we performed a numerical study on the 
electron concentration in the p-region. Fig.5(a) shows the 
electron concentrations in the p-region for the three 
structures. The electron concentration of LED3 is sig-
nificantly lower than that of LED2 and LED1, which is 
enough to prove that the gradient reduction quantum 

barrier structure of In composition enhances the ability 
of LED to suppress electron leakage. Finally, we ex-
plored the spontaneous emission rate of LED1, LED2 
and LED3 at 100 mA injection current as shown in 
Fig.5(b). It can be seen that as the gradient quantum bar-
rier structure replaces the traditional structure, the peak 
emission wavelength of InGaN MQW moves from 
394 nm to 390 nm, which is caused by the unequal radia-
tive recombination rate and carrier injection efficiency. 
This investigation also provides insights for further re-
search on LEDs in the near-UV region. 

 

 
Fig.5 (a) Electron leakage in the p-type region and (b) 
spontaneous emission rate at 100 mA injection cur-
rent for three structures 

In this experiment, we proposed a quantum barrier 
structure with gradient subtraction of In composition to 
improve the IQE and output power of InGaN-based LEDs. 
The hole transport and carrier concentration of the LDE 
are improved by tuning the barrier structure in the MQW. 
The comparison found that the electrons effective barrier 
height increased from 274.89 meV to 291.45 meV by 
6.02%, and the holes effective barrier height decreased 
from 339.99 meV to 313.69 meV by 7.73%. The designed 
quantum barrier structure with gradient reduction of In 
composition, the well/barrier interface lattice mismatch is 
reduced, so this design generates less built-in electric field, 
which improves IQE. Compared with the traditional 
structure LED1, the output power of the LED3 is in-
creased from 91.3 mW to 176.2 mW, an increase of 
92.9%. This design has solved the problem of low effi-
ciency of the device very well. 
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